Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbogt5 Structured version   Visualization version   GIF version

Theorem gbogt5 40184
Description: Any odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbogt5 (𝑍 ∈ GoldbachOdd → 5 < 𝑍)

Proof of Theorem gbogt5
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbo 40174 . 2 (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))
2 prmuz2 15246 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
3 eluz2 11569 . . . . . . . . 9 (𝑝 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝))
42, 3sylib 207 . . . . . . . 8 (𝑝 ∈ ℙ → (2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝))
5 prmuz2 15246 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘2))
6 eluz2 11569 . . . . . . . . 9 (𝑞 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞))
75, 6sylib 207 . . . . . . . 8 (𝑞 ∈ ℙ → (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞))
84, 7anim12i 588 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)))
9 prmuz2 15246 . . . . . . . 8 (𝑟 ∈ ℙ → 𝑟 ∈ (ℤ‘2))
10 eluz2 11569 . . . . . . . 8 (𝑟 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟))
119, 10sylib 207 . . . . . . 7 (𝑟 ∈ ℙ → (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟))
12 zre 11258 . . . . . . . . . . . . . 14 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
13123ad2ant2 1076 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → 𝑝 ∈ ℝ)
14 zre 11258 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → 𝑞 ∈ ℝ)
15143ad2ant2 1076 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → 𝑞 ∈ ℝ)
1613, 15anim12i 588 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
17 2re 10967 . . . . . . . . . . . . 13 2 ∈ ℝ
1817, 17pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 2 ∈ ℝ)
1916, 18jctil 558 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)))
20 simp3 1056 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → 2 ≤ 𝑝)
21 simp3 1056 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → 2 ≤ 𝑞)
2220, 21anim12i 588 . . . . . . . . . . 11 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (2 ≤ 𝑝 ∧ 2 ≤ 𝑞))
23 le2add 10389 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((2 ≤ 𝑝 ∧ 2 ≤ 𝑞) → (2 + 2) ≤ (𝑝 + 𝑞)))
2419, 22, 23sylc 63 . . . . . . . . . 10 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → (2 + 2) ≤ (𝑝 + 𝑞))
25 2p2e4 11021 . . . . . . . . . . . . . . . . 17 (2 + 2) = 4
2625breq1i 4590 . . . . . . . . . . . . . . . 16 ((2 + 2) ≤ (𝑝 + 𝑞) ↔ 4 ≤ (𝑝 + 𝑞))
27 zaddcl 11294 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
2827zred 11358 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℝ)
2928adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → (𝑝 + 𝑞) ∈ ℝ)
30 zre 11258 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℤ → 𝑟 ∈ ℝ)
31303ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 𝑟 ∈ ℝ)
3229, 31anim12i 588 . . . . . . . . . . . . . . . . . . . 20 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ))
33 4re 10974 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℝ
3433, 17pm3.2i 470 . . . . . . . . . . . . . . . . . . . 20 (4 ∈ ℝ ∧ 2 ∈ ℝ)
3532, 34jctil 558 . . . . . . . . . . . . . . . . . . 19 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((4 ∈ ℝ ∧ 2 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)))
36 simpr 476 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → 4 ≤ (𝑝 + 𝑞))
37 simp3 1056 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 2 ≤ 𝑟)
3836, 37anim12i 588 . . . . . . . . . . . . . . . . . . 19 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (4 ≤ (𝑝 + 𝑞) ∧ 2 ≤ 𝑟))
39 le2add 10389 . . . . . . . . . . . . . . . . . . 19 (((4 ∈ ℝ ∧ 2 ∈ ℝ) ∧ ((𝑝 + 𝑞) ∈ ℝ ∧ 𝑟 ∈ ℝ)) → ((4 ≤ (𝑝 + 𝑞) ∧ 2 ≤ 𝑟) → (4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟)))
4035, 38, 39sylc 63 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟))
41 4p2e6 11039 . . . . . . . . . . . . . . . . . . . . . . . . 25 (4 + 2) = 6
4241breq1i 4590 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) ↔ 6 ≤ ((𝑝 + 𝑞) + 𝑟))
43 5lt6 11081 . . . . . . . . . . . . . . . . . . . . . . . . 25 5 < 6
44 5re 10976 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 ∈ ℝ
4544a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 5 ∈ ℝ)
46 6re 10978 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6 ∈ ℝ
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 6 ∈ ℝ)
4827adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (𝑝 + 𝑞) ∈ ℤ)
49 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → 𝑟 ∈ ℤ)
5048, 49zaddcld 11362 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℤ)
5150zred 11358 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((𝑝 + 𝑞) + 𝑟) ∈ ℝ)
52 ltletr 10008 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((5 ∈ ℝ ∧ 6 ∈ ℝ ∧ ((𝑝 + 𝑞) + 𝑟) ∈ ℝ) → ((5 < 6 ∧ 6 ≤ ((𝑝 + 𝑞) + 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5345, 47, 51, 52syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((5 < 6 ∧ 6 ≤ ((𝑝 + 𝑞) + 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5443, 53mpani 708 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → (6 ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5542, 54syl5bi 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 𝑟 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
5655expcom 450 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℤ → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
57563ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
5857com12 32 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
5958adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6059imp 444 . . . . . . . . . . . . . . . . . 18 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → ((4 + 2) ≤ ((𝑝 + 𝑞) + 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
6140, 60mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ 4 ≤ (𝑝 + 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟))
6261exp31 628 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (4 ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6326, 62syl5bi 231 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6463expcom 450 . . . . . . . . . . . . . 14 (𝑞 ∈ ℤ → (𝑝 ∈ ℤ → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
65643ad2ant2 1076 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → (𝑝 ∈ ℤ → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
6665com12 32 . . . . . . . . . . . 12 (𝑝 ∈ ℤ → ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
67663ad2ant2 1076 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) → ((2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))))
6867imp 444 . . . . . . . . . 10 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 + 2) ≤ (𝑝 + 𝑞) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟))))
6924, 68mpd 15 . . . . . . . . 9 (((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) → ((2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟) → 5 < ((𝑝 + 𝑞) + 𝑟)))
7069imp 444 . . . . . . . 8 ((((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → 5 < ((𝑝 + 𝑞) + 𝑟))
71 breq2 4587 . . . . . . . 8 (𝑍 = ((𝑝 + 𝑞) + 𝑟) → (5 < 𝑍 ↔ 5 < ((𝑝 + 𝑞) + 𝑟)))
7270, 71syl5ibrcom 236 . . . . . . 7 ((((2 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 2 ≤ 𝑝) ∧ (2 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 2 ≤ 𝑞)) ∧ (2 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ 2 ≤ 𝑟)) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
738, 11, 72syl2an 493 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7473rexlimdva 3013 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7574adantl 481 . . . 4 ((𝑍 ∈ Odd ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → (∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7675rexlimdvva 3020 . . 3 (𝑍 ∈ Odd → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟) → 5 < 𝑍))
7776imp 444 . 2 ((𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟)) → 5 < 𝑍)
781, 77sylbi 206 1 (𝑍 ∈ GoldbachOdd → 5 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814   + caddc 9818   < clt 9953  cle 9954  2c2 10947  4c4 10949  5c5 10950  6c6 10951  cz 11254  cuz 11563  cprime 15223   Odd codd 40076   GoldbachOdd cgbo 40168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224  df-gbo 40171
This theorem is referenced by:  gboge7  40185
  Copyright terms: Public domain W3C validator