MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdom Structured version   Visualization version   GIF version

Theorem hashdom 13029
Description: Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
hashdom ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((#‘𝐴) ≤ (#‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem hashdom
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 12633 . . . . . . . 8 (1...((#‘𝐵) − (#‘𝐴))) ∈ Fin
2 ficardom 8670 . . . . . . . 8 ((1...((#‘𝐵) − (#‘𝐴))) ∈ Fin → (card‘(1...((#‘𝐵) − (#‘𝐴)))) ∈ ω)
31, 2ax-mp 5 . . . . . . 7 (card‘(1...((#‘𝐵) − (#‘𝐴)))) ∈ ω
4 eqid 2610 . . . . . . . . . . . . . 14 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
54hashgval 12982 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (#‘𝐴))
65ad2antrr 758 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (#‘𝐴))
74hashgval 12982 . . . . . . . . . . . . . 14 ((1...((#‘𝐵) − (#‘𝐴))) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((#‘𝐵) − (#‘𝐴))))) = (#‘(1...((#‘𝐵) − (#‘𝐴)))))
81, 7ax-mp 5 . . . . . . . . . . . . 13 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((#‘𝐵) − (#‘𝐴))))) = (#‘(1...((#‘𝐵) − (#‘𝐴))))
9 hashcl 13009 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Fin → (#‘𝐴) ∈ ℕ0)
109ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → (#‘𝐴) ∈ ℕ0)
11 hashcl 13009 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → (#‘𝐵) ∈ ℕ0)
1211ad2antlr 759 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → (#‘𝐵) ∈ ℕ0)
13 simpr 476 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → (#‘𝐴) ≤ (#‘𝐵))
14 nn0sub2 11315 . . . . . . . . . . . . . . 15 (((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0 ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((#‘𝐵) − (#‘𝐴)) ∈ ℕ0)
1510, 12, 13, 14syl3anc 1318 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((#‘𝐵) − (#‘𝐴)) ∈ ℕ0)
16 hashfz1 12996 . . . . . . . . . . . . . 14 (((#‘𝐵) − (#‘𝐴)) ∈ ℕ0 → (#‘(1...((#‘𝐵) − (#‘𝐴)))) = ((#‘𝐵) − (#‘𝐴)))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → (#‘(1...((#‘𝐵) − (#‘𝐴)))) = ((#‘𝐵) − (#‘𝐴)))
188, 17syl5eq 2656 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((#‘𝐵) − (#‘𝐴))))) = ((#‘𝐵) − (#‘𝐴)))
196, 18oveq12d 6567 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((#‘𝐵) − (#‘𝐴)))))) = ((#‘𝐴) + ((#‘𝐵) − (#‘𝐴))))
209nn0cnd 11230 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (#‘𝐴) ∈ ℂ)
2111nn0cnd 11230 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → (#‘𝐵) ∈ ℂ)
22 pncan3 10168 . . . . . . . . . . . . 13 (((#‘𝐴) ∈ ℂ ∧ (#‘𝐵) ∈ ℂ) → ((#‘𝐴) + ((#‘𝐵) − (#‘𝐴))) = (#‘𝐵))
2320, 21, 22syl2an 493 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐴) + ((#‘𝐵) − (#‘𝐴))) = (#‘𝐵))
2423adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((#‘𝐴) + ((#‘𝐵) − (#‘𝐴))) = (#‘𝐵))
2519, 24eqtrd 2644 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((#‘𝐵) − (#‘𝐴)))))) = (#‘𝐵))
26 ficardom 8670 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
2726ad2antrr 758 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → (card‘𝐴) ∈ ω)
284hashgadd 13027 . . . . . . . . . . 11 (((card‘𝐴) ∈ ω ∧ (card‘(1...((#‘𝐵) − (#‘𝐴)))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((#‘𝐵) − (#‘𝐴)))))))
2927, 3, 28sylancl 693 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴)))))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(1...((#‘𝐵) − (#‘𝐴)))))))
304hashgval 12982 . . . . . . . . . . 11 (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (#‘𝐵))
3130ad2antlr 759 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (#‘𝐵))
3225, 29, 313eqtr4d 2654 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴)))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
3332fveq2d 6107 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))))
344hashgf1o 12632 . . . . . . . . 9 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0
35 nnacl 7578 . . . . . . . . . 10 (((card‘𝐴) ∈ ω ∧ (card‘(1...((#‘𝐵) − (#‘𝐴)))) ∈ ω) → ((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))) ∈ ω)
3627, 3, 35sylancl 693 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))) ∈ ω)
37 f1ocnvfv1 6432 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ ((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))))) = ((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))))
3834, 36, 37sylancr 694 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))))) = ((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))))
39 ficardom 8670 . . . . . . . . . 10 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
4039ad2antlr 759 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → (card‘𝐵) ∈ ω)
41 f1ocnvfv1 6432 . . . . . . . . 9 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω):ω–1-1-onto→ℕ0 ∧ (card‘𝐵) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4234, 40, 41sylancr 694 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = (card‘𝐵))
4333, 38, 423eqtr3d 2652 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))) = (card‘𝐵))
44 oveq2 6557 . . . . . . . . 9 (𝑦 = (card‘(1...((#‘𝐵) − (#‘𝐴)))) → ((card‘𝐴) +𝑜 𝑦) = ((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))))
4544eqeq1d 2612 . . . . . . . 8 (𝑦 = (card‘(1...((#‘𝐵) − (#‘𝐴)))) → (((card‘𝐴) +𝑜 𝑦) = (card‘𝐵) ↔ ((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))) = (card‘𝐵)))
4645rspcev 3282 . . . . . . 7 (((card‘(1...((#‘𝐵) − (#‘𝐴)))) ∈ ω ∧ ((card‘𝐴) +𝑜 (card‘(1...((#‘𝐵) − (#‘𝐴))))) = (card‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +𝑜 𝑦) = (card‘𝐵))
473, 43, 46sylancr 694 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (#‘𝐴) ≤ (#‘𝐵)) → ∃𝑦 ∈ ω ((card‘𝐴) +𝑜 𝑦) = (card‘𝐵))
4847ex 449 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐴) ≤ (#‘𝐵) → ∃𝑦 ∈ ω ((card‘𝐴) +𝑜 𝑦) = (card‘𝐵)))
49 cardnn 8672 . . . . . . . . . 10 (𝑦 ∈ ω → (card‘𝑦) = 𝑦)
5049adantl 481 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (card‘𝑦) = 𝑦)
5150oveq2d 6565 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → ((card‘𝐴) +𝑜 (card‘𝑦)) = ((card‘𝐴) +𝑜 𝑦))
5251eqeq1d 2612 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +𝑜 (card‘𝑦)) = (card‘𝐵) ↔ ((card‘𝐴) +𝑜 𝑦) = (card‘𝐵)))
53 fveq2 6103 . . . . . . . 8 (((card‘𝐴) +𝑜 (card‘𝑦)) = (card‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)))
54 nnfi 8038 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ Fin)
55 ficardom 8670 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (card‘𝑦) ∈ ω)
564hashgadd 13027 . . . . . . . . . . . . . 14 (((card‘𝐴) ∈ ω ∧ (card‘𝑦) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
5726, 55, 56syl2an 493 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝑦))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))))
584hashgval 12982 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦)) = (#‘𝑦))
595, 58oveqan12d 6568 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝑦))) = ((#‘𝐴) + (#‘𝑦)))
6057, 59eqtrd 2644 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝑦))) = ((#‘𝐴) + (#‘𝑦)))
6160adantlr 747 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝑦))) = ((#‘𝐴) + (#‘𝑦)))
6230ad2antlr 759 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (#‘𝐵))
6361, 62eqeq12d 2625 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) ↔ ((#‘𝐴) + (#‘𝑦)) = (#‘𝐵)))
64 hashcl 13009 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (#‘𝑦) ∈ ℕ0)
6564nn0ge0d 11231 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → 0 ≤ (#‘𝑦))
6665adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → 0 ≤ (#‘𝑦))
679nn0red 11229 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → (#‘𝐴) ∈ ℝ)
6864nn0red 11229 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → (#‘𝑦) ∈ ℝ)
69 addge01 10417 . . . . . . . . . . . . . 14 (((#‘𝐴) ∈ ℝ ∧ (#‘𝑦) ∈ ℝ) → (0 ≤ (#‘𝑦) ↔ (#‘𝐴) ≤ ((#‘𝐴) + (#‘𝑦))))
7067, 68, 69syl2an 493 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (0 ≤ (#‘𝑦) ↔ (#‘𝐴) ≤ ((#‘𝐴) + (#‘𝑦))))
7166, 70mpbid 221 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑦 ∈ Fin) → (#‘𝐴) ≤ ((#‘𝐴) + (#‘𝑦)))
7271adantlr 747 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (#‘𝐴) ≤ ((#‘𝐴) + (#‘𝑦)))
73 breq2 4587 . . . . . . . . . . 11 (((#‘𝐴) + (#‘𝑦)) = (#‘𝐵) → ((#‘𝐴) ≤ ((#‘𝐴) + (#‘𝑦)) ↔ (#‘𝐴) ≤ (#‘𝐵)))
7472, 73syl5ibcom 234 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((#‘𝐴) + (#‘𝑦)) = (#‘𝐵) → (#‘𝐴) ≤ (#‘𝐵)))
7563, 74sylbid 229 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (#‘𝐴) ≤ (#‘𝐵)))
7654, 75sylan2 490 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝑦))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) → (#‘𝐴) ≤ (#‘𝐵)))
7753, 76syl5 33 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +𝑜 (card‘𝑦)) = (card‘𝐵) → (#‘𝐴) ≤ (#‘𝐵)))
7852, 77sylbird 249 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ ω) → (((card‘𝐴) +𝑜 𝑦) = (card‘𝐵) → (#‘𝐴) ≤ (#‘𝐵)))
7978rexlimdva 3013 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (∃𝑦 ∈ ω ((card‘𝐴) +𝑜 𝑦) = (card‘𝐵) → (#‘𝐴) ≤ (#‘𝐵)))
8048, 79impbid 201 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐴) ≤ (#‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +𝑜 𝑦) = (card‘𝐵)))
81 nnawordex 7604 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +𝑜 𝑦) = (card‘𝐵)))
8226, 39, 81syl2an 493 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ ∃𝑦 ∈ ω ((card‘𝐴) +𝑜 𝑦) = (card‘𝐵)))
83 finnum 8657 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
84 finnum 8657 . . . . 5 (𝐵 ∈ Fin → 𝐵 ∈ dom card)
85 carddom2 8686 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8683, 84, 85syl2an 493 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
8780, 82, 863bitr2d 295 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐴) ≤ (#‘𝐵) ↔ 𝐴𝐵))
8887adantlr 747 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ 𝐵 ∈ Fin) → ((#‘𝐴) ≤ (#‘𝐵) ↔ 𝐴𝐵))
89 hashxrcl 13010 . . . . . 6 (𝐴 ∈ Fin → (#‘𝐴) ∈ ℝ*)
9089ad2antrr 758 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (#‘𝐴) ∈ ℝ*)
91 pnfge 11840 . . . . 5 ((#‘𝐴) ∈ ℝ* → (#‘𝐴) ≤ +∞)
9290, 91syl 17 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (#‘𝐴) ≤ +∞)
93 hashinf 12984 . . . . 5 ((𝐵𝑉 ∧ ¬ 𝐵 ∈ Fin) → (#‘𝐵) = +∞)
9493adantll 746 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (#‘𝐵) = +∞)
9592, 94breqtrrd 4611 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (#‘𝐴) ≤ (#‘𝐵))
96 isinffi 8701 . . . . . 6 ((¬ 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9796ancoms 468 . . . . 5 ((𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
9897adantlr 747 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐴1-1𝐵)
99 brdomg 7851 . . . . 5 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10099ad2antlr 759 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
10198, 100mpbird 246 . . 3 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → 𝐴𝐵)
10295, 1012thd 254 . 2 (((𝐴 ∈ Fin ∧ 𝐵𝑉) ∧ ¬ 𝐵 ∈ Fin) → ((#‘𝐴) ≤ (#‘𝐵) ↔ 𝐴𝐵))
10388, 102pm2.61dan 828 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉) → ((#‘𝐴) ≤ (#‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wrex 2897  Vcvv 3173  wss 3540   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  cres 5040  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  ωcom 6957  reccrdg 7392   +𝑜 coa 7444  cdom 7839  Fincfn 7841  cardccrd 8644  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952  cle 9954  cmin 10145  0cn0 11169  ...cfz 12197  #chash 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980
This theorem is referenced by:  hashdomi  13030  hashsdom  13031  hashun2  13033  hashss  13058  hashsslei  13073  hashfun  13084  hashf1  13098  hashge3el3dif  13122  isercoll  14246  phicl2  15311  phibnd  15314  prmreclem2  15459  prmreclem3  15460  4sqlem11  15497  vdwlem11  15533  ramub2  15556  0ram  15562  ram0  15564  sylow1lem4  17839  pgpssslw  17852  fislw  17863  znfld  19728  znidomb  19729  fta1blem  23732  birthdaylem3  24480  basellem4  24610  ppiwordi  24688  musum  24717  ppiub  24729  chpub  24745  lgsqrlem4  24874  upgrex  25759  umgraex  25852  sizeusglecusg  26014  konigsberg  26514  derangenlem  30407  subfaclefac  30412  erdsze2lem1  30439  snmlff  30565  idomsubgmo  36795  sizusglecusg  40679  aacllem  42356
  Copyright terms: Public domain W3C validator