Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangenlem Structured version   Visualization version   GIF version

Theorem derangenlem 30407
Description: One half of derangen 30408. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypothesis
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (#‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
Assertion
Ref Expression
derangenlem ((𝐴𝐵𝐵 ∈ Fin) → (𝐷𝐴) ≤ (𝐷𝐵))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)

Proof of Theorem derangenlem
Dummy variables 𝑔 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . . 5 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴𝐵)
2 bren 7850 . . . . 5 (𝐴𝐵 ↔ ∃𝑠 𝑠:𝐴1-1-onto𝐵)
31, 2sylib 207 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → ∃𝑠 𝑠:𝐴1-1-onto𝐵)
4 deranglem 30402 . . . . 5 (𝐵 ∈ Fin → {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)} ∈ Fin)
54adantl 481 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)} ∈ Fin)
6 f1oco 6072 . . . . . . . . . . . 12 ((𝑠:𝐴1-1-onto𝐵𝑔:𝐴1-1-onto𝐴) → (𝑠𝑔):𝐴1-1-onto𝐵)
76ad2ant2lr 780 . . . . . . . . . . 11 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) → (𝑠𝑔):𝐴1-1-onto𝐵)
8 f1ocnv 6062 . . . . . . . . . . . 12 (𝑠:𝐴1-1-onto𝐵𝑠:𝐵1-1-onto𝐴)
98ad2antlr 759 . . . . . . . . . . 11 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) → 𝑠:𝐵1-1-onto𝐴)
10 f1oco 6072 . . . . . . . . . . 11 (((𝑠𝑔):𝐴1-1-onto𝐵𝑠:𝐵1-1-onto𝐴) → ((𝑠𝑔) ∘ 𝑠):𝐵1-1-onto𝐵)
117, 9, 10syl2anc 691 . . . . . . . . . 10 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) → ((𝑠𝑔) ∘ 𝑠):𝐵1-1-onto𝐵)
12 coass 5571 . . . . . . . . . . . . . . 15 ((𝑠𝑔) ∘ 𝑠) = (𝑠 ∘ (𝑔𝑠))
1312fveq1i 6104 . . . . . . . . . . . . . 14 (((𝑠𝑔) ∘ 𝑠)‘𝑧) = ((𝑠 ∘ (𝑔𝑠))‘𝑧)
14 simprl 790 . . . . . . . . . . . . . . . . 17 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) → 𝑔:𝐴1-1-onto𝐴)
15 f1oco 6072 . . . . . . . . . . . . . . . . 17 ((𝑔:𝐴1-1-onto𝐴𝑠:𝐵1-1-onto𝐴) → (𝑔𝑠):𝐵1-1-onto𝐴)
1614, 9, 15syl2anc 691 . . . . . . . . . . . . . . . 16 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) → (𝑔𝑠):𝐵1-1-onto𝐴)
17 f1of 6050 . . . . . . . . . . . . . . . 16 ((𝑔𝑠):𝐵1-1-onto𝐴 → (𝑔𝑠):𝐵𝐴)
1816, 17syl 17 . . . . . . . . . . . . . . 15 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) → (𝑔𝑠):𝐵𝐴)
19 fvco3 6185 . . . . . . . . . . . . . . 15 (((𝑔𝑠):𝐵𝐴𝑧𝐵) → ((𝑠 ∘ (𝑔𝑠))‘𝑧) = (𝑠‘((𝑔𝑠)‘𝑧)))
2018, 19sylan 487 . . . . . . . . . . . . . 14 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → ((𝑠 ∘ (𝑔𝑠))‘𝑧) = (𝑠‘((𝑔𝑠)‘𝑧)))
2113, 20syl5eq 2656 . . . . . . . . . . . . 13 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → (((𝑠𝑔) ∘ 𝑠)‘𝑧) = (𝑠‘((𝑔𝑠)‘𝑧)))
22 f1of 6050 . . . . . . . . . . . . . . . . . 18 (𝑠:𝐵1-1-onto𝐴𝑠:𝐵𝐴)
239, 22syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) → 𝑠:𝐵𝐴)
24 fvco3 6185 . . . . . . . . . . . . . . . . 17 ((𝑠:𝐵𝐴𝑧𝐵) → ((𝑔𝑠)‘𝑧) = (𝑔‘(𝑠𝑧)))
2523, 24sylan 487 . . . . . . . . . . . . . . . 16 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → ((𝑔𝑠)‘𝑧) = (𝑔‘(𝑠𝑧)))
2623ffvelrnda 6267 . . . . . . . . . . . . . . . . 17 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → (𝑠𝑧) ∈ 𝐴)
27 simplrr 797 . . . . . . . . . . . . . . . . 17 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)
28 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑠𝑧) → (𝑔𝑦) = (𝑔‘(𝑠𝑧)))
29 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑠𝑧) → 𝑦 = (𝑠𝑧))
3028, 29neeq12d 2843 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑠𝑧) → ((𝑔𝑦) ≠ 𝑦 ↔ (𝑔‘(𝑠𝑧)) ≠ (𝑠𝑧)))
3130rspcv 3278 . . . . . . . . . . . . . . . . 17 ((𝑠𝑧) ∈ 𝐴 → (∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦 → (𝑔‘(𝑠𝑧)) ≠ (𝑠𝑧)))
3226, 27, 31sylc 63 . . . . . . . . . . . . . . . 16 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → (𝑔‘(𝑠𝑧)) ≠ (𝑠𝑧))
3325, 32eqnetrd 2849 . . . . . . . . . . . . . . 15 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → ((𝑔𝑠)‘𝑧) ≠ (𝑠𝑧))
3433necomd 2837 . . . . . . . . . . . . . 14 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → (𝑠𝑧) ≠ ((𝑔𝑠)‘𝑧))
35 simpllr 795 . . . . . . . . . . . . . . . 16 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → 𝑠:𝐴1-1-onto𝐵)
3618ffvelrnda 6267 . . . . . . . . . . . . . . . 16 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → ((𝑔𝑠)‘𝑧) ∈ 𝐴)
37 f1ocnvfv 6434 . . . . . . . . . . . . . . . 16 ((𝑠:𝐴1-1-onto𝐵 ∧ ((𝑔𝑠)‘𝑧) ∈ 𝐴) → ((𝑠‘((𝑔𝑠)‘𝑧)) = 𝑧 → (𝑠𝑧) = ((𝑔𝑠)‘𝑧)))
3835, 36, 37syl2anc 691 . . . . . . . . . . . . . . 15 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → ((𝑠‘((𝑔𝑠)‘𝑧)) = 𝑧 → (𝑠𝑧) = ((𝑔𝑠)‘𝑧)))
3938necon3d 2803 . . . . . . . . . . . . . 14 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → ((𝑠𝑧) ≠ ((𝑔𝑠)‘𝑧) → (𝑠‘((𝑔𝑠)‘𝑧)) ≠ 𝑧))
4034, 39mpd 15 . . . . . . . . . . . . 13 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → (𝑠‘((𝑔𝑠)‘𝑧)) ≠ 𝑧)
4121, 40eqnetrd 2849 . . . . . . . . . . . 12 (((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) ∧ 𝑧𝐵) → (((𝑠𝑔) ∘ 𝑠)‘𝑧) ≠ 𝑧)
4241ralrimiva 2949 . . . . . . . . . . 11 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) → ∀𝑧𝐵 (((𝑠𝑔) ∘ 𝑠)‘𝑧) ≠ 𝑧)
43 fveq2 6103 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (((𝑠𝑔) ∘ 𝑠)‘𝑧) = (((𝑠𝑔) ∘ 𝑠)‘𝑦))
44 id 22 . . . . . . . . . . . . 13 (𝑧 = 𝑦𝑧 = 𝑦)
4543, 44neeq12d 2843 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ((((𝑠𝑔) ∘ 𝑠)‘𝑧) ≠ 𝑧 ↔ (((𝑠𝑔) ∘ 𝑠)‘𝑦) ≠ 𝑦))
4645cbvralv 3147 . . . . . . . . . . 11 (∀𝑧𝐵 (((𝑠𝑔) ∘ 𝑠)‘𝑧) ≠ 𝑧 ↔ ∀𝑦𝐵 (((𝑠𝑔) ∘ 𝑠)‘𝑦) ≠ 𝑦)
4742, 46sylib 207 . . . . . . . . . 10 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) → ∀𝑦𝐵 (((𝑠𝑔) ∘ 𝑠)‘𝑦) ≠ 𝑦)
4811, 47jca 553 . . . . . . . . 9 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)) → (((𝑠𝑔) ∘ 𝑠):𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (((𝑠𝑔) ∘ 𝑠)‘𝑦) ≠ 𝑦))
4948ex 449 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) → ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) → (((𝑠𝑔) ∘ 𝑠):𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (((𝑠𝑔) ∘ 𝑠)‘𝑦) ≠ 𝑦)))
50 vex 3176 . . . . . . . . 9 𝑔 ∈ V
51 f1oeq1 6040 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓:𝐴1-1-onto𝐴𝑔:𝐴1-1-onto𝐴))
52 fveq1 6102 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
5352neeq1d 2841 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓𝑦) ≠ 𝑦 ↔ (𝑔𝑦) ≠ 𝑦))
5453ralbidv 2969 . . . . . . . . . 10 (𝑓 = 𝑔 → (∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦 ↔ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦))
5551, 54anbi12d 743 . . . . . . . . 9 (𝑓 = 𝑔 → ((𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦) ↔ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦)))
5650, 55elab 3319 . . . . . . . 8 (𝑔 ∈ {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ↔ (𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦))
57 vex 3176 . . . . . . . . . . 11 𝑠 ∈ V
5857, 50coex 7011 . . . . . . . . . 10 (𝑠𝑔) ∈ V
5957cnvex 7006 . . . . . . . . . 10 𝑠 ∈ V
6058, 59coex 7011 . . . . . . . . 9 ((𝑠𝑔) ∘ 𝑠) ∈ V
61 f1oeq1 6040 . . . . . . . . . 10 (𝑓 = ((𝑠𝑔) ∘ 𝑠) → (𝑓:𝐵1-1-onto𝐵 ↔ ((𝑠𝑔) ∘ 𝑠):𝐵1-1-onto𝐵))
62 fveq1 6102 . . . . . . . . . . . 12 (𝑓 = ((𝑠𝑔) ∘ 𝑠) → (𝑓𝑦) = (((𝑠𝑔) ∘ 𝑠)‘𝑦))
6362neeq1d 2841 . . . . . . . . . . 11 (𝑓 = ((𝑠𝑔) ∘ 𝑠) → ((𝑓𝑦) ≠ 𝑦 ↔ (((𝑠𝑔) ∘ 𝑠)‘𝑦) ≠ 𝑦))
6463ralbidv 2969 . . . . . . . . . 10 (𝑓 = ((𝑠𝑔) ∘ 𝑠) → (∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦 ↔ ∀𝑦𝐵 (((𝑠𝑔) ∘ 𝑠)‘𝑦) ≠ 𝑦))
6561, 64anbi12d 743 . . . . . . . . 9 (𝑓 = ((𝑠𝑔) ∘ 𝑠) → ((𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦) ↔ (((𝑠𝑔) ∘ 𝑠):𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (((𝑠𝑔) ∘ 𝑠)‘𝑦) ≠ 𝑦)))
6660, 65elab 3319 . . . . . . . 8 (((𝑠𝑔) ∘ 𝑠) ∈ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)} ↔ (((𝑠𝑔) ∘ 𝑠):𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (((𝑠𝑔) ∘ 𝑠)‘𝑦) ≠ 𝑦))
6749, 56, 663imtr4g 284 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) → (𝑔 ∈ {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} → ((𝑠𝑔) ∘ 𝑠) ∈ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)}))
68 vex 3176 . . . . . . . . . 10 ∈ V
69 f1oeq1 6040 . . . . . . . . . . 11 (𝑓 = → (𝑓:𝐴1-1-onto𝐴:𝐴1-1-onto𝐴))
70 fveq1 6102 . . . . . . . . . . . . 13 (𝑓 = → (𝑓𝑦) = (𝑦))
7170neeq1d 2841 . . . . . . . . . . . 12 (𝑓 = → ((𝑓𝑦) ≠ 𝑦 ↔ (𝑦) ≠ 𝑦))
7271ralbidv 2969 . . . . . . . . . . 11 (𝑓 = → (∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦 ↔ ∀𝑦𝐴 (𝑦) ≠ 𝑦))
7369, 72anbi12d 743 . . . . . . . . . 10 (𝑓 = → ((𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦) ↔ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦)))
7468, 73elab 3319 . . . . . . . . 9 ( ∈ {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ↔ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))
7556, 74anbi12i 729 . . . . . . . 8 ((𝑔 ∈ {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ∧ ∈ {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}) ↔ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦)))
768ad2antlr 759 . . . . . . . . . . . 12 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → 𝑠:𝐵1-1-onto𝐴)
77 f1ofo 6057 . . . . . . . . . . . 12 (𝑠:𝐵1-1-onto𝐴𝑠:𝐵onto𝐴)
7876, 77syl 17 . . . . . . . . . . 11 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → 𝑠:𝐵onto𝐴)
797adantrr 749 . . . . . . . . . . . 12 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → (𝑠𝑔):𝐴1-1-onto𝐵)
80 f1ofn 6051 . . . . . . . . . . . 12 ((𝑠𝑔):𝐴1-1-onto𝐵 → (𝑠𝑔) Fn 𝐴)
8179, 80syl 17 . . . . . . . . . . 11 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → (𝑠𝑔) Fn 𝐴)
82 simplr 788 . . . . . . . . . . . . 13 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → 𝑠:𝐴1-1-onto𝐵)
83 simprrl 800 . . . . . . . . . . . . 13 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → :𝐴1-1-onto𝐴)
84 f1oco 6072 . . . . . . . . . . . . 13 ((𝑠:𝐴1-1-onto𝐵:𝐴1-1-onto𝐴) → (𝑠):𝐴1-1-onto𝐵)
8582, 83, 84syl2anc 691 . . . . . . . . . . . 12 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → (𝑠):𝐴1-1-onto𝐵)
86 f1ofn 6051 . . . . . . . . . . . 12 ((𝑠):𝐴1-1-onto𝐵 → (𝑠) Fn 𝐴)
8785, 86syl 17 . . . . . . . . . . 11 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → (𝑠) Fn 𝐴)
88 cocan2 6447 . . . . . . . . . . 11 ((𝑠:𝐵onto𝐴 ∧ (𝑠𝑔) Fn 𝐴 ∧ (𝑠) Fn 𝐴) → (((𝑠𝑔) ∘ 𝑠) = ((𝑠) ∘ 𝑠) ↔ (𝑠𝑔) = (𝑠)))
8978, 81, 87, 88syl3anc 1318 . . . . . . . . . 10 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → (((𝑠𝑔) ∘ 𝑠) = ((𝑠) ∘ 𝑠) ↔ (𝑠𝑔) = (𝑠)))
90 f1of1 6049 . . . . . . . . . . . 12 (𝑠:𝐴1-1-onto𝐵𝑠:𝐴1-1𝐵)
9190ad2antlr 759 . . . . . . . . . . 11 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → 𝑠:𝐴1-1𝐵)
92 simprll 798 . . . . . . . . . . . 12 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → 𝑔:𝐴1-1-onto𝐴)
93 f1of 6050 . . . . . . . . . . . 12 (𝑔:𝐴1-1-onto𝐴𝑔:𝐴𝐴)
9492, 93syl 17 . . . . . . . . . . 11 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → 𝑔:𝐴𝐴)
95 f1of 6050 . . . . . . . . . . . 12 (:𝐴1-1-onto𝐴:𝐴𝐴)
9683, 95syl 17 . . . . . . . . . . 11 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → :𝐴𝐴)
97 cocan1 6446 . . . . . . . . . . 11 ((𝑠:𝐴1-1𝐵𝑔:𝐴𝐴:𝐴𝐴) → ((𝑠𝑔) = (𝑠) ↔ 𝑔 = ))
9891, 94, 96, 97syl3anc 1318 . . . . . . . . . 10 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → ((𝑠𝑔) = (𝑠) ↔ 𝑔 = ))
9989, 98bitrd 267 . . . . . . . . 9 ((((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) ∧ ((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦))) → (((𝑠𝑔) ∘ 𝑠) = ((𝑠) ∘ 𝑠) ↔ 𝑔 = ))
10099ex 449 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) → (((𝑔:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ≠ 𝑦) ∧ (:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑦) ≠ 𝑦)) → (((𝑠𝑔) ∘ 𝑠) = ((𝑠) ∘ 𝑠) ↔ 𝑔 = )))
10175, 100syl5bi 231 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) → ((𝑔 ∈ {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ∧ ∈ {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}) → (((𝑠𝑔) ∘ 𝑠) = ((𝑠) ∘ 𝑠) ↔ 𝑔 = )))
10267, 101dom2d 7882 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝑠:𝐴1-1-onto𝐵) → ({𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)} ∈ Fin → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ≼ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)}))
103102ex 449 . . . . 5 ((𝐴𝐵𝐵 ∈ Fin) → (𝑠:𝐴1-1-onto𝐵 → ({𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)} ∈ Fin → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ≼ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)})))
104103exlimdv 1848 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → (∃𝑠 𝑠:𝐴1-1-onto𝐵 → ({𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)} ∈ Fin → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ≼ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)})))
1053, 5, 104mp2d 47 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ≼ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)})
106 enfii 8062 . . . . . 6 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
107106ancoms 468 . . . . 5 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
108 deranglem 30402 . . . . 5 (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ∈ Fin)
109107, 108syl 17 . . . 4 ((𝐴𝐵𝐵 ∈ Fin) → {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ∈ Fin)
110 hashdom 13029 . . . 4 (({𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ∈ Fin ∧ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)} ∈ Fin) → ((#‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}) ≤ (#‘{𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)}) ↔ {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ≼ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)}))
111109, 5, 110syl2anc 691 . . 3 ((𝐴𝐵𝐵 ∈ Fin) → ((#‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}) ≤ (#‘{𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)}) ↔ {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)} ≼ {𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)}))
112105, 111mpbird 246 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (#‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}) ≤ (#‘{𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)}))
113 derang.d . . . 4 𝐷 = (𝑥 ∈ Fin ↦ (#‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
114113derangval 30403 . . 3 (𝐴 ∈ Fin → (𝐷𝐴) = (#‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
115107, 114syl 17 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐷𝐴) = (#‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
116113derangval 30403 . . 3 (𝐵 ∈ Fin → (𝐷𝐵) = (#‘{𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)}))
117116adantl 481 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐷𝐵) = (#‘{𝑓 ∣ (𝑓:𝐵1-1-onto𝐵 ∧ ∀𝑦𝐵 (𝑓𝑦) ≠ 𝑦)}))
118112, 115, 1173brtr4d 4615 1 ((𝐴𝐵𝐵 ∈ Fin) → (𝐷𝐴) ≤ (𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896   class class class wbr 4583  cmpt 4643  ccnv 5037  ccom 5042   Fn wfn 5799  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  cen 7838  cdom 7839  Fincfn 7841  cle 9954  #chash 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980
This theorem is referenced by:  derangen  30408
  Copyright terms: Public domain W3C validator