MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znfld Structured version   Visualization version   GIF version

Theorem znfld 19728
Description: The ℤ/n structure is a finite field when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znfld (𝑁 ∈ ℙ → 𝑌 ∈ Field)

Proof of Theorem znfld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmnn 15226 . . . . 5 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
2 nnnn0 11176 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
31, 2syl 17 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
4 zntos.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
54zncrng 19712 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
63, 5syl 17 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ CRing)
7 crngring 18381 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
81, 2, 5, 74syl 19 . . . . 5 (𝑁 ∈ ℙ → 𝑌 ∈ Ring)
9 hash2 13054 . . . . . . 7 (#‘2𝑜) = 2
10 prmuz2 15246 . . . . . . . . 9 (𝑁 ∈ ℙ → 𝑁 ∈ (ℤ‘2))
11 eluzle 11576 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
1210, 11syl 17 . . . . . . . 8 (𝑁 ∈ ℙ → 2 ≤ 𝑁)
13 eqid 2610 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
144, 13znhash 19726 . . . . . . . . 9 (𝑁 ∈ ℕ → (#‘(Base‘𝑌)) = 𝑁)
151, 14syl 17 . . . . . . . 8 (𝑁 ∈ ℙ → (#‘(Base‘𝑌)) = 𝑁)
1612, 15breqtrrd 4611 . . . . . . 7 (𝑁 ∈ ℙ → 2 ≤ (#‘(Base‘𝑌)))
179, 16syl5eqbr 4618 . . . . . 6 (𝑁 ∈ ℙ → (#‘2𝑜) ≤ (#‘(Base‘𝑌)))
18 2onn 7607 . . . . . . . 8 2𝑜 ∈ ω
19 nnfi 8038 . . . . . . . 8 (2𝑜 ∈ ω → 2𝑜 ∈ Fin)
2018, 19ax-mp 5 . . . . . . 7 2𝑜 ∈ Fin
21 fvex 6113 . . . . . . 7 (Base‘𝑌) ∈ V
22 hashdom 13029 . . . . . . 7 ((2𝑜 ∈ Fin ∧ (Base‘𝑌) ∈ V) → ((#‘2𝑜) ≤ (#‘(Base‘𝑌)) ↔ 2𝑜 ≼ (Base‘𝑌)))
2320, 21, 22mp2an 704 . . . . . 6 ((#‘2𝑜) ≤ (#‘(Base‘𝑌)) ↔ 2𝑜 ≼ (Base‘𝑌))
2417, 23sylib 207 . . . . 5 (𝑁 ∈ ℙ → 2𝑜 ≼ (Base‘𝑌))
2513isnzr2 19084 . . . . 5 (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2𝑜 ≼ (Base‘𝑌)))
268, 24, 25sylanbrc 695 . . . 4 (𝑁 ∈ ℙ → 𝑌 ∈ NzRing)
27 eqid 2610 . . . . . . . . 9 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
284, 13, 27znzrhfo 19715 . . . . . . . 8 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
293, 28syl 17 . . . . . . 7 (𝑁 ∈ ℙ → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
30 foelrn 6286 . . . . . . . 8 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧))
31 foelrn 6286 . . . . . . . 8 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌)) → ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))
3230, 31anim12dan 878 . . . . . . 7 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
3329, 32sylan 487 . . . . . 6 ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
34 reeanv 3086 . . . . . . . 8 (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) ↔ (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)))
35 euclemma 15263 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁𝑧𝑁𝑤)))
36353expb 1258 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (𝑁 ∥ (𝑧 · 𝑤) ↔ (𝑁𝑧𝑁𝑤)))
378adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑌 ∈ Ring)
3827zrhrhm 19679 . . . . . . . . . . . . . . . 16 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
3937, 38syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
40 simprl 790 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑧 ∈ ℤ)
41 simprr 792 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑤 ∈ ℤ)
42 zringbas 19643 . . . . . . . . . . . . . . . 16 ℤ = (Base‘ℤring)
43 zringmulr 19646 . . . . . . . . . . . . . . . 16 · = (.r‘ℤring)
44 eqid 2610 . . . . . . . . . . . . . . . 16 (.r𝑌) = (.r𝑌)
4542, 43, 44rhmmul 18550 . . . . . . . . . . . . . . 15 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
4639, 40, 41, 45syl3anc 1318 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
4746eqeq1d 2612 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌)))
48 zmulcl 11303 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → (𝑧 · 𝑤) ∈ ℤ)
49 eqid 2610 . . . . . . . . . . . . . . 15 (0g𝑌) = (0g𝑌)
504, 27, 49zndvds0 19718 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑧 · 𝑤) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
513, 48, 50syl2an 493 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘(𝑧 · 𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
5247, 51bitr3d 269 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) ↔ 𝑁 ∥ (𝑧 · 𝑤)))
533adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → 𝑁 ∈ ℕ0)
544, 27, 49zndvds0 19718 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ↔ 𝑁𝑧))
5553, 40, 54syl2anc 691 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ↔ 𝑁𝑧))
564, 27, 49zndvds0 19718 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑤 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑤) = (0g𝑌) ↔ 𝑁𝑤))
5753, 41, 56syl2anc 691 . . . . . . . . . . . . 13 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((ℤRHom‘𝑌)‘𝑤) = (0g𝑌) ↔ 𝑁𝑤))
5855, 57orbi12d 742 . . . . . . . . . . . 12 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)) ↔ (𝑁𝑧𝑁𝑤)))
5936, 52, 583bitr4d 299 . . . . . . . . . . 11 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6059biimpd 218 . . . . . . . . . 10 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
61 oveq12 6558 . . . . . . . . . . . 12 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (𝑥(.r𝑌)𝑦) = (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)))
6261eqeq1d 2612 . . . . . . . . . . 11 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌)))
63 eqeq1 2614 . . . . . . . . . . . . 13 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (0g𝑌) ↔ ((ℤRHom‘𝑌)‘𝑧) = (0g𝑌)))
6463orbi1d 735 . . . . . . . . . . . 12 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → ((𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
65 eqeq1 2614 . . . . . . . . . . . . 13 (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → (𝑦 = (0g𝑌) ↔ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)))
6665orbi2d 734 . . . . . . . . . . . 12 (𝑦 = ((ℤRHom‘𝑌)‘𝑤) → ((((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6764, 66sylan9bb 732 . . . . . . . . . . 11 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)) ↔ (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌))))
6862, 67imbi12d 333 . . . . . . . . . 10 ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → (((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))) ↔ ((((ℤRHom‘𝑌)‘𝑧)(.r𝑌)((ℤRHom‘𝑌)‘𝑤)) = (0g𝑌) → (((ℤRHom‘𝑌)‘𝑧) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑤) = (0g𝑌)))))
6960, 68syl5ibrcom 236 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → ((𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7069rexlimdvva 3020 . . . . . . . 8 (𝑁 ∈ ℙ → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7134, 70syl5bir 232 . . . . . . 7 (𝑁 ∈ ℙ → ((∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤)) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7271imp 444 . . . . . 6 ((𝑁 ∈ ℙ ∧ (∃𝑧 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑧) ∧ ∃𝑤 ∈ ℤ 𝑦 = ((ℤRHom‘𝑌)‘𝑤))) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7333, 72syldan 486 . . . . 5 ((𝑁 ∈ ℙ ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7473ralrimivva 2954 . . . 4 (𝑁 ∈ ℙ → ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌))))
7513, 44, 49isdomn 19115 . . . 4 (𝑌 ∈ Domn ↔ (𝑌 ∈ NzRing ∧ ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)((𝑥(.r𝑌)𝑦) = (0g𝑌) → (𝑥 = (0g𝑌) ∨ 𝑦 = (0g𝑌)))))
7626, 74, 75sylanbrc 695 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ Domn)
77 isidom 19125 . . 3 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
786, 76, 77sylanbrc 695 . 2 (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)
794, 13znfi 19727 . . . 4 (𝑁 ∈ ℕ → (Base‘𝑌) ∈ Fin)
801, 79syl 17 . . 3 (𝑁 ∈ ℙ → (Base‘𝑌) ∈ Fin)
8113fiidomfld 19129 . . 3 ((Base‘𝑌) ∈ Fin → (𝑌 ∈ IDomn ↔ 𝑌 ∈ Field))
8280, 81syl 17 . 2 (𝑁 ∈ ℙ → (𝑌 ∈ IDomn ↔ 𝑌 ∈ Field))
8378, 82mpbid 221 1 (𝑁 ∈ ℙ → 𝑌 ∈ Field)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173   class class class wbr 4583  ontowfo 5802  cfv 5804  (class class class)co 6549  ωcom 6957  2𝑜c2o 7441  cdom 7839  Fincfn 7841   · cmul 9820  cle 9954  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  #chash 12979  cdvds 14821  cprime 15223  Basecbs 15695  .rcmulr 15769  0gc0g 15923  Ringcrg 18370  CRingccrg 18371   RingHom crh 18535  Fieldcfield 18571  NzRingcnzr 19078  Domncdomn 19101  IDomncidom 19102  ringzring 19637  ℤRHomczrh 19667  ℤ/nczn 19670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-rnghom 18538  df-drng 18572  df-field 18573  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-nzr 19079  df-rlreg 19104  df-domn 19105  df-idom 19106  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674
This theorem is referenced by:  znidomb  19729  lgsqrlem1  24871  lgsqrlem2  24872  lgsqrlem3  24873  lgsqrlem4  24874  lgseisenlem3  24902  lgseisenlem4  24903
  Copyright terms: Public domain W3C validator