MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znfld Structured version   Unicode version

Theorem znfld 17993
Description: The ℤ/nℤ structure is a finite field when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y  |-  Y  =  (ℤ/n `  N )
Assertion
Ref Expression
znfld  |-  ( N  e.  Prime  ->  Y  e. Field
)

Proof of Theorem znfld
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmnn 13766 . . . . 5  |-  ( N  e.  Prime  ->  N  e.  NN )
2 nnnn0 10586 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
31, 2syl 16 . . . 4  |-  ( N  e.  Prime  ->  N  e. 
NN0 )
4 zntos.y . . . . 5  |-  Y  =  (ℤ/n `  N )
54zncrng 17977 . . . 4  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
63, 5syl 16 . . 3  |-  ( N  e.  Prime  ->  Y  e. 
CRing )
7 crngrng 16655 . . . . . 6  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
81, 2, 5, 74syl 21 . . . . 5  |-  ( N  e.  Prime  ->  Y  e. 
Ring )
9 hash2 12163 . . . . . . 7  |-  ( # `  2o )  =  2
10 prmuz2 13781 . . . . . . . . 9  |-  ( N  e.  Prime  ->  N  e.  ( ZZ>= `  2 )
)
11 eluzle 10873 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
1210, 11syl 16 . . . . . . . 8  |-  ( N  e.  Prime  ->  2  <_  N )
13 eqid 2443 . . . . . . . . . 10  |-  ( Base `  Y )  =  (
Base `  Y )
144, 13znhash 17991 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( # `
 ( Base `  Y
) )  =  N )
151, 14syl 16 . . . . . . . 8  |-  ( N  e.  Prime  ->  ( # `  ( Base `  Y
) )  =  N )
1612, 15breqtrrd 4318 . . . . . . 7  |-  ( N  e.  Prime  ->  2  <_ 
( # `  ( Base `  Y ) ) )
179, 16syl5eqbr 4325 . . . . . 6  |-  ( N  e.  Prime  ->  ( # `  2o )  <_  ( # `
 ( Base `  Y
) ) )
18 2onn 7079 . . . . . . . 8  |-  2o  e.  om
19 nnfi 7503 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
2018, 19ax-mp 5 . . . . . . 7  |-  2o  e.  Fin
21 fvex 5701 . . . . . . 7  |-  ( Base `  Y )  e.  _V
22 hashdom 12142 . . . . . . 7  |-  ( ( 2o  e.  Fin  /\  ( Base `  Y )  e.  _V )  ->  (
( # `  2o )  <_  ( # `  ( Base `  Y ) )  <-> 
2o  ~<_  ( Base `  Y
) ) )
2320, 21, 22mp2an 672 . . . . . 6  |-  ( (
# `  2o )  <_  ( # `  ( Base `  Y ) )  <-> 
2o  ~<_  ( Base `  Y
) )
2417, 23sylib 196 . . . . 5  |-  ( N  e.  Prime  ->  2o  ~<_  ( Base `  Y ) )
2513isnzr2 17345 . . . . 5  |-  ( Y  e. NzRing 
<->  ( Y  e.  Ring  /\  2o  ~<_  ( Base `  Y
) ) )
268, 24, 25sylanbrc 664 . . . 4  |-  ( N  e.  Prime  ->  Y  e. NzRing
)
27 eqid 2443 . . . . . . . . 9  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
284, 13, 27znzrhfo 17980 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
293, 28syl 16 . . . . . . 7  |-  ( N  e.  Prime  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
30 foelrn 5862 . . . . . . . 8  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  x  e.  ( Base `  Y ) )  ->  E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z ) )
31 foelrn 5862 . . . . . . . 8  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  y  e.  ( Base `  Y ) )  ->  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) )
3230, 31anim12dan 833 . . . . . . 7  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  ( x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y ) ) )  ->  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) ) )
3329, 32sylan 471 . . . . . 6  |-  ( ( N  e.  Prime  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
) ) )  -> 
( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) ) )
34 reeanv 2888 . . . . . . . 8  |-  ( E. z  e.  ZZ  E. w  e.  ZZ  (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  <->  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z
)  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y
) `  w )
) )
35 euclemma 13794 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  z  e.  ZZ  /\  w  e.  ZZ )  ->  ( N  ||  ( z  x.  w )  <->  ( N  ||  z  \/  N  ||  w ) ) )
36353expb 1188 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( N  ||  ( z  x.  w
)  <->  ( N  ||  z  \/  N  ||  w
) ) )
378adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  Y  e.  Ring )
3827zrhrhm 17943 . . . . . . . . . . . . . . . 16  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
3937, 38syl 16 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
40 simprl 755 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  z  e.  ZZ )
41 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  w  e.  ZZ )
42 zringbas 17889 . . . . . . . . . . . . . . . 16  |-  ZZ  =  ( Base ` ring )
43 zringmulr 17892 . . . . . . . . . . . . . . . 16  |-  x.  =  ( .r ` ring )
44 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( .r
`  Y )  =  ( .r `  Y
)
4542, 43, 44rhmmul 16817 . . . . . . . . . . . . . . 15  |-  ( ( ( ZRHom `  Y
)  e.  (ring RingHom  Y )  /\  z  e.  ZZ  /\  w  e.  ZZ )  ->  (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( ( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) ) )
4639, 40, 41, 45syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( ( ZRHom `  Y ) `  ( z  x.  w
) )  =  ( ( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) ) )
4746eqeq1d 2451 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( 0g `  Y
)  <->  ( ( ( ZRHom `  Y ) `  z ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  w )
)  =  ( 0g
`  Y ) ) )
48 zmulcl 10693 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  w  e.  ZZ )  ->  ( z  x.  w
)  e.  ZZ )
49 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
504, 27, 49zndvds0 17983 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  ( z  x.  w
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( z  x.  w
) )  =  ( 0g `  Y )  <-> 
N  ||  ( z  x.  w ) ) )
513, 48, 50syl2an 477 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( 0g `  Y
)  <->  N  ||  ( z  x.  w ) ) )
5247, 51bitr3d 255 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  <->  N  ||  ( z  x.  w ) ) )
533adantr 465 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  N  e.  NN0 )
544, 27, 49zndvds0 17983 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  <->  N  ||  z
) )
5553, 40, 54syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  <->  N  ||  z
) )
564, 27, 49zndvds0 17983 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  w  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y )  <->  N  ||  w
) )
5753, 41, 56syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y )  <->  N  ||  w
) )
5855, 57orbi12d 709 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) )  <-> 
( N  ||  z  \/  N  ||  w ) ) )
5936, 52, 583bitr4d 285 . . . . . . . . . . 11  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  <->  ( ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6059biimpd 207 . . . . . . . . . 10  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y ) ) ) )
61 oveq12 6100 . . . . . . . . . . . 12  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
x ( .r `  Y ) y )  =  ( ( ( ZRHom `  Y ) `  z ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  w )
) )
6261eqeq1d 2451 . . . . . . . . . . 11  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  <->  ( (
( ZRHom `  Y
) `  z )
( .r `  Y
) ( ( ZRHom `  Y ) `  w
) )  =  ( 0g `  Y ) ) )
63 eqeq1 2449 . . . . . . . . . . . . 13  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( x  =  ( 0g `  Y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y ) ) )
6463orbi1d 702 . . . . . . . . . . . 12  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( (
x  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) )  <-> 
( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) ) ) )
65 eqeq1 2449 . . . . . . . . . . . . 13  |-  ( y  =  ( ( ZRHom `  Y ) `  w
)  ->  ( y  =  ( 0g `  Y )  <->  ( ( ZRHom `  Y ) `  w )  =  ( 0g `  Y ) ) )
6665orbi2d 701 . . . . . . . . . . . 12  |-  ( y  =  ( ( ZRHom `  Y ) `  w
)  ->  ( (
( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) )  <-> 
( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6764, 66sylan9bb 699 . . . . . . . . . . 11  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) )  <->  ( ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6862, 67imbi12d 320 . . . . . . . . . 10  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) )  <->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y ) ) ) ) )
6960, 68syl5ibrcom 222 . . . . . . . . 9  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7069rexlimdvva 2848 . . . . . . . 8  |-  ( N  e.  Prime  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7134, 70syl5bir 218 . . . . . . 7  |-  ( N  e.  Prime  ->  ( ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7271imp 429 . . . . . 6  |-  ( ( N  e.  Prime  /\  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w
) ) )  -> 
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) ) )
7333, 72syldan 470 . . . . 5  |-  ( ( N  e.  Prime  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
) ) )  -> 
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) ) )
7473ralrimivva 2808 . . . 4  |-  ( N  e.  Prime  ->  A. x  e.  ( Base `  Y
) A. y  e.  ( Base `  Y
) ( ( x ( .r `  Y
) y )  =  ( 0g `  Y
)  ->  ( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) )
7513, 44, 49isdomn 17366 . . . 4  |-  ( Y  e. Domn 
<->  ( Y  e. NzRing  /\  A. x  e.  ( Base `  Y ) A. y  e.  ( Base `  Y
) ( ( x ( .r `  Y
) y )  =  ( 0g `  Y
)  ->  ( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7626, 74, 75sylanbrc 664 . . 3  |-  ( N  e.  Prime  ->  Y  e. Domn
)
77 isidom 17376 . . 3  |-  ( Y  e. IDomn 
<->  ( Y  e.  CRing  /\  Y  e. Domn ) )
786, 76, 77sylanbrc 664 . 2  |-  ( N  e.  Prime  ->  Y  e. IDomn
)
794, 13znfi 17992 . . . 4  |-  ( N  e.  NN  ->  ( Base `  Y )  e. 
Fin )
801, 79syl 16 . . 3  |-  ( N  e.  Prime  ->  ( Base `  Y )  e.  Fin )
8113fiidomfld 17380 . . 3  |-  ( (
Base `  Y )  e.  Fin  ->  ( Y  e. IDomn  <-> 
Y  e. Field ) )
8280, 81syl 16 . 2  |-  ( N  e.  Prime  ->  ( Y  e. IDomn 
<->  Y  e. Field ) )
8378, 82mpbid 210 1  |-  ( N  e.  Prime  ->  Y  e. Field
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   E.wrex 2716   _Vcvv 2972   class class class wbr 4292   -onto->wfo 5416   ` cfv 5418  (class class class)co 6091   omcom 6476   2oc2o 6914    ~<_ cdom 7308   Fincfn 7310    x. cmul 9287    <_ cle 9419   NNcn 10322   2c2 10371   NN0cn0 10579   ZZcz 10646   ZZ>=cuz 10861   #chash 12103    || cdivides 13535   Primecprime 13763   Basecbs 14174   .rcmulr 14239   0gc0g 14378   Ringcrg 16645   CRingccrg 16646   RingHom crh 16804  Fieldcfield 16833  NzRingcnzr 17339  Domncdomn 17351  IDomncidom 17352  ℤringzring 17883   ZRHomczrh 17931  ℤ/nczn 17934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-tpos 6745  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-ec 7103  df-qs 7107  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-rp 10992  df-fz 11438  df-fzo 11549  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-dvds 13536  df-gcd 13691  df-prm 13764  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-0g 14380  df-imas 14446  df-divs 14447  df-mnd 15415  df-mhm 15464  df-grp 15545  df-minusg 15546  df-sbg 15547  df-mulg 15548  df-subg 15678  df-nsg 15679  df-eqg 15680  df-ghm 15745  df-cmn 16279  df-abl 16280  df-mgp 16592  df-ur 16604  df-rng 16647  df-cring 16648  df-oppr 16715  df-dvdsr 16733  df-unit 16734  df-invr 16764  df-rnghom 16806  df-drng 16834  df-field 16835  df-subrg 16863  df-lmod 16950  df-lss 17014  df-lsp 17053  df-sra 17253  df-rgmod 17254  df-lidl 17255  df-rsp 17256  df-2idl 17314  df-nzr 17340  df-rlreg 17354  df-domn 17355  df-idom 17356  df-cnfld 17819  df-zring 17884  df-zrh 17935  df-zn 17938
This theorem is referenced by:  znidomb  17994  lgsqrlem1  22680  lgsqrlem2  22681  lgsqrlem3  22682  lgsqrlem4  22683  lgseisenlem3  22690  lgseisenlem4  22691
  Copyright terms: Public domain W3C validator