MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashdom Structured version   Unicode version

Theorem hashdom 12261
Description: Dominance relation for the size function. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
hashdom  |-  ( ( A  e.  Fin  /\  B  e.  V )  ->  ( ( # `  A
)  <_  ( # `  B
)  <->  A  ~<_  B )
)

Proof of Theorem hashdom
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 11912 . . . . . . . 8  |-  ( 1 ... ( ( # `  B )  -  ( # `
 A ) ) )  e.  Fin
2 ficardom 8243 . . . . . . . 8  |-  ( ( 1 ... ( (
# `  B )  -  ( # `  A
) ) )  e. 
Fin  ->  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) )  e.  om )
31, 2ax-mp 5 . . . . . . 7  |-  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) )  e.  om
4 eqid 2454 . . . . . . . . . . . . . 14  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om )  =  ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om )
54hashgval 12224 . . . . . . . . . . . . 13  |-  ( A  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  =  ( # `  A
) )
65ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  =  ( # `  A
) )
74hashgval 12224 . . . . . . . . . . . . . 14  |-  ( ( 1 ... ( (
# `  B )  -  ( # `  A
) ) )  e. 
Fin  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) )  =  ( # `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) )
81, 7ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) )  =  ( # `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) )
9 hashcl 12244 . . . . . . . . . . . . . . . 16  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
109ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( # `
 A )  e. 
NN0 )
11 hashcl 12244 . . . . . . . . . . . . . . . 16  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
1211ad2antlr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( # `
 B )  e. 
NN0 )
13 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( # `
 A )  <_ 
( # `  B ) )
14 nn0sub2 10817 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0  /\  ( # `
 A )  <_ 
( # `  B ) )  ->  ( ( # `
 B )  -  ( # `  A ) )  e.  NN0 )
1510, 12, 13, 14syl3anc 1219 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( # `  B )  -  ( # `  A
) )  e.  NN0 )
16 hashfz1 12235 . . . . . . . . . . . . . 14  |-  ( ( ( # `  B
)  -  ( # `  A ) )  e. 
NN0  ->  ( # `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) )  =  ( ( # `  B
)  -  ( # `  A ) ) )
1715, 16syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( # `
 ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) )  =  ( (
# `  B )  -  ( # `  A
) ) )
188, 17syl5eq 2507 . . . . . . . . . . . 12  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) ) )  =  ( ( # `  B
)  -  ( # `  A ) ) )
196, 18oveq12d 6219 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) ) ) )  =  ( ( # `  A
)  +  ( (
# `  B )  -  ( # `  A
) ) ) )
209nn0cnd 10750 . . . . . . . . . . . . 13  |-  ( A  e.  Fin  ->  ( # `
 A )  e.  CC )
2111nn0cnd 10750 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  ( # `
 B )  e.  CC )
22 pncan3 9730 . . . . . . . . . . . . 13  |-  ( ( ( # `  A
)  e.  CC  /\  ( # `  B )  e.  CC )  -> 
( ( # `  A
)  +  ( (
# `  B )  -  ( # `  A
) ) )  =  ( # `  B
) )
2320, 21, 22syl2an 477 . . . . . . . . . . . 12  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( # `  A
)  +  ( (
# `  B )  -  ( # `  A
) ) )  =  ( # `  B
) )
2423adantr 465 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( # `  A )  +  ( ( # `  B )  -  ( # `
 A ) ) )  =  ( # `  B ) )
2519, 24eqtrd 2495 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) ) ) )  =  ( # `  B
) )
26 ficardom 8243 . . . . . . . . . . . 12  |-  ( A  e.  Fin  ->  ( card `  A )  e. 
om )
2726ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( card `  A )  e. 
om )
284hashgadd 12259 . . . . . . . . . . 11  |-  ( ( ( card `  A
)  e.  om  /\  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) )  e.  om )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) )  =  ( ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) ) ) ) )
2927, 3, 28sylancl 662 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  (
( card `  A )  +o  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) ) )  =  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  +  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) ) ) )
304hashgval 12224 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  B ) )  =  ( # `  B
) )
3130ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  B ) )  =  ( # `  B
) )
3225, 29, 313eqtr4d 2505 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  (
( card `  A )  +o  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) ) )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  B
) ) )
3332fveq2d 5804 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( `' ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) ) )  =  ( `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) ) ) )
344hashgf1o 11911 . . . . . . . . 9  |-  ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) : om -1-1-onto-> NN0
35 nnacl 7161 . . . . . . . . . 10  |-  ( ( ( card `  A
)  e.  om  /\  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) )  e.  om )  ->  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) )  e.  om )
3627, 3, 35sylancl 662 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( card `  A )  +o  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) )  e. 
om )
37 f1ocnvfv1 6093 . . . . . . . . 9  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) : om -1-1-onto-> NN0  /\  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) )  e.  om )  ->  ( `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) ) )  =  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) )
3834, 36, 37sylancr 663 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( `' ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) ) )  =  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) )
39 ficardom 8243 . . . . . . . . . 10  |-  ( B  e.  Fin  ->  ( card `  B )  e. 
om )
4039ad2antlr 726 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( card `  B )  e. 
om )
41 f1ocnvfv1 6093 . . . . . . . . 9  |-  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) : om -1-1-onto-> NN0  /\  ( card `  B
)  e.  om )  ->  ( `' ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) ) )  =  ( card `  B
) )
4234, 40, 41sylancr 663 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  ( `' ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) ) )  =  ( card `  B
) )
4333, 38, 423eqtr3d 2503 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  (
( card `  A )  +o  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) ) )  =  ( card `  B
) )
44 oveq2 6209 . . . . . . . . 9  |-  ( y  =  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) )  ->  (
( card `  A )  +o  y )  =  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) ) )
4544eqeq1d 2456 . . . . . . . 8  |-  ( y  =  ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) )  ->  (
( ( card `  A
)  +o  y )  =  ( card `  B
)  <->  ( ( card `  A )  +o  ( card `  ( 1 ... ( ( # `  B
)  -  ( # `  A ) ) ) ) )  =  (
card `  B )
) )
4645rspcev 3179 . . . . . . 7  |-  ( ( ( card `  (
1 ... ( ( # `  B )  -  ( # `
 A ) ) ) )  e.  om  /\  ( ( card `  A
)  +o  ( card `  ( 1 ... (
( # `  B )  -  ( # `  A
) ) ) ) )  =  ( card `  B ) )  ->  E. y  e.  om  ( ( card `  A
)  +o  y )  =  ( card `  B
) )
473, 43, 46sylancr 663 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( # `  A
)  <_  ( # `  B
) )  ->  E. y  e.  om  ( ( card `  A )  +o  y
)  =  ( card `  B ) )
4847ex 434 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( # `  A
)  <_  ( # `  B
)  ->  E. y  e.  om  ( ( card `  A )  +o  y
)  =  ( card `  B ) ) )
49 cardnn 8245 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( card `  y )  =  y )
5049adantl 466 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( card `  y
)  =  y )
5150oveq2d 6217 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( ( card `  A )  +o  ( card `  y ) )  =  ( ( card `  A )  +o  y
) )
5251eqeq1d 2456 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( ( (
card `  A )  +o  ( card `  y
) )  =  (
card `  B )  <->  ( ( card `  A
)  +o  y )  =  ( card `  B
) ) )
53 fveq2 5800 . . . . . . . 8  |-  ( ( ( card `  A
)  +o  ( card `  y ) )  =  ( card `  B
)  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  y ) ) )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  B
) ) )
54 nnfi 7615 . . . . . . . . 9  |-  ( y  e.  om  ->  y  e.  Fin )
55 ficardom 8243 . . . . . . . . . . . . . 14  |-  ( y  e.  Fin  ->  ( card `  y )  e. 
om )
564hashgadd 12259 . . . . . . . . . . . . . 14  |-  ( ( ( card `  A
)  e.  om  /\  ( card `  y )  e.  om )  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  (
( card `  A )  +o  ( card `  y
) ) )  =  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  y ) ) ) )
5726, 55, 56syl2an 477 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  y ) ) )  =  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  A ) )  +  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  y
) ) ) )
584hashgval 12224 . . . . . . . . . . . . . 14  |-  ( y  e.  Fin  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  y ) )  =  ( # `  y
) )
595, 58oveqan12d 6220 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  ( ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  A
) )  +  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( card `  y ) ) )  =  ( (
# `  A )  +  ( # `  y
) ) )
6057, 59eqtrd 2495 . . . . . . . . . . . 12  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  y ) ) )  =  ( ( # `  A )  +  (
# `  y )
) )
6160adantlr 714 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( ( card `  A
)  +o  ( card `  y ) ) )  =  ( ( # `  A )  +  (
# `  y )
) )
6230ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  + 
1 ) ) ,  0 )  |`  om ) `  ( card `  B
) )  =  (
# `  B )
)
6361, 62eqeq12d 2476 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( (
card `  A )  +o  ( card `  y
) ) )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) )  <->  ( ( # `
 A )  +  ( # `  y
) )  =  (
# `  B )
) )
64 hashcl 12244 . . . . . . . . . . . . . . 15  |-  ( y  e.  Fin  ->  ( # `
 y )  e. 
NN0 )
6564nn0ge0d 10751 . . . . . . . . . . . . . 14  |-  ( y  e.  Fin  ->  0  <_  ( # `  y
) )
6665adantl 466 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  0  <_  ( # `  y
) )
679nn0red 10749 . . . . . . . . . . . . . 14  |-  ( A  e.  Fin  ->  ( # `
 A )  e.  RR )
6864nn0red 10749 . . . . . . . . . . . . . 14  |-  ( y  e.  Fin  ->  ( # `
 y )  e.  RR )
69 addge01 9961 . . . . . . . . . . . . . 14  |-  ( ( ( # `  A
)  e.  RR  /\  ( # `  y )  e.  RR )  -> 
( 0  <_  ( # `
 y )  <->  ( # `  A
)  <_  ( ( # `
 A )  +  ( # `  y
) ) ) )
7067, 68, 69syl2an 477 . . . . . . . . . . . . 13  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  ( 0  <_  ( # `
 y )  <->  ( # `  A
)  <_  ( ( # `
 A )  +  ( # `  y
) ) ) )
7166, 70mpbid 210 . . . . . . . . . . . 12  |-  ( ( A  e.  Fin  /\  y  e.  Fin )  ->  ( # `  A
)  <_  ( ( # `
 A )  +  ( # `  y
) ) )
7271adantlr 714 . . . . . . . . . . 11  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( # `  A
)  <_  ( ( # `
 A )  +  ( # `  y
) ) )
73 breq2 4405 . . . . . . . . . . 11  |-  ( ( ( # `  A
)  +  ( # `  y ) )  =  ( # `  B
)  ->  ( ( # `
 A )  <_ 
( ( # `  A
)  +  ( # `  y ) )  <->  ( # `  A
)  <_  ( # `  B
) ) )
7472, 73syl5ibcom 220 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( ( (
# `  A )  +  ( # `  y
) )  =  (
# `  B )  ->  ( # `  A
)  <_  ( # `  B
) ) )
7563, 74sylbid 215 . . . . . . . . 9  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  ->  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( (
card `  A )  +o  ( card `  y
) ) )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) )  ->  ( # `
 A )  <_ 
( # `  B ) ) )
7654, 75sylan2 474 . . . . . . . 8  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om ) `  ( (
card `  A )  +o  ( card `  y
) ) )  =  ( ( rec (
( x  e.  _V  |->  ( x  +  1
) ) ,  0 )  |`  om ) `  ( card `  B
) )  ->  ( # `
 A )  <_ 
( # `  B ) ) )
7753, 76syl5 32 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( ( (
card `  A )  +o  ( card `  y
) )  =  (
card `  B )  ->  ( # `  A
)  <_  ( # `  B
) ) )
7852, 77sylbird 235 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  om )  ->  ( ( (
card `  A )  +o  y )  =  (
card `  B )  ->  ( # `  A
)  <_  ( # `  B
) ) )
7978rexlimdva 2947 . . . . 5  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( E. y  e. 
om  ( ( card `  A )  +o  y
)  =  ( card `  B )  ->  ( # `
 A )  <_ 
( # `  B ) ) )
8048, 79impbid 191 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( # `  A
)  <_  ( # `  B
)  <->  E. y  e.  om  ( ( card `  A
)  +o  y )  =  ( card `  B
) ) )
81 nnawordex 7187 . . . . 5  |-  ( ( ( card `  A
)  e.  om  /\  ( card `  B )  e.  om )  ->  (
( card `  A )  C_  ( card `  B
)  <->  E. y  e.  om  ( ( card `  A
)  +o  y )  =  ( card `  B
) ) )
8226, 39, 81syl2an 477 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( card `  A
)  C_  ( card `  B )  <->  E. y  e.  om  ( ( card `  A )  +o  y
)  =  ( card `  B ) ) )
83 finnum 8230 . . . . 5  |-  ( A  e.  Fin  ->  A  e.  dom  card )
84 finnum 8230 . . . . 5  |-  ( B  e.  Fin  ->  B  e.  dom  card )
85 carddom2 8259 . . . . 5  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  B )  <->  A  ~<_  B ) )
8683, 84, 85syl2an 477 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( card `  A
)  C_  ( card `  B )  <->  A  ~<_  B ) )
8780, 82, 863bitr2d 281 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( # `  A
)  <_  ( # `  B
)  <->  A  ~<_  B )
)
8887adantlr 714 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  B  e.  Fin )  ->  ( ( # `  A )  <_  ( # `
 B )  <->  A  ~<_  B ) )
89 hashxrcl 12245 . . . . . 6  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
RR* )
9089ad2antrr 725 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  ( # `
 A )  e. 
RR* )
91 pnfge 11222 . . . . 5  |-  ( (
# `  A )  e.  RR*  ->  ( # `  A
)  <_ +oo )
9290, 91syl 16 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  ( # `
 A )  <_ +oo )
93 hashinf 12226 . . . . 5  |-  ( ( B  e.  V  /\  -.  B  e.  Fin )  ->  ( # `  B
)  = +oo )
9493adantll 713 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  ( # `
 B )  = +oo )
9592, 94breqtrrd 4427 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  ( # `
 A )  <_ 
( # `  B ) )
96 isinffi 8274 . . . . . 6  |-  ( ( -.  B  e.  Fin  /\  A  e.  Fin )  ->  E. f  f : A -1-1-> B )
9796ancoms 453 . . . . 5  |-  ( ( A  e.  Fin  /\  -.  B  e.  Fin )  ->  E. f  f : A -1-1-> B )
9897adantlr 714 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  E. f 
f : A -1-1-> B
)
99 brdomg 7431 . . . . 5  |-  ( B  e.  V  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
10099ad2antlr 726 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
10198, 100mpbird 232 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  A  ~<_  B )
10295, 1012thd 240 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  V )  /\  -.  B  e. 
Fin )  ->  (
( # `  A )  <_  ( # `  B
)  <->  A  ~<_  B )
)
10388, 102pm2.61dan 789 1  |-  ( ( A  e.  Fin  /\  B  e.  V )  ->  ( ( # `  A
)  <_  ( # `  B
)  <->  A  ~<_  B )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   E.wrex 2800   _Vcvv 3078    C_ wss 3437   class class class wbr 4401    |-> cmpt 4459   `'ccnv 4948   dom cdm 4949    |` cres 4951   -1-1->wf1 5524   -1-1-onto->wf1o 5526   ` cfv 5527  (class class class)co 6201   omcom 6587   reccrdg 6976    +o coa 7028    ~<_ cdom 7419   Fincfn 7421   cardccrd 8217   CCcc 9392   RRcr 9393   0cc0 9394   1c1 9395    + caddc 9397   +oocpnf 9527   RR*cxr 9529    <_ cle 9531    - cmin 9707   NN0cn0 10691   ...cfz 11555   #chash 12221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-card 8221  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-n0 10692  df-z 10759  df-uz 10974  df-fz 11556  df-hash 12222
This theorem is referenced by:  hashdomi  12262  hashsdom  12263  hashun2  12265  hashss  12285  hashsslei  12295  hashge3el3dif  12306  hashfun  12318  hashf1  12329  isercoll  13264  phicl2  13962  phibnd  13965  prmreclem2  14097  prmreclem3  14098  4sqlem11  14135  vdwlem11  14171  ramub2  14194  0ram  14200  ram0  14202  sylow1lem4  16222  pgpssslw  16235  fislw  16246  znfld  18119  znidomb  18120  fta1blem  21774  birthdaylem3  22481  basellem4  22555  ppiwordi  22634  musum  22665  ppiub  22677  chpub  22693  lgsqrlem4  22817  umgraex  23410  sizeusglecusg  23547  konigsberg  23761  derangenlem  27204  subfaclefac  27209  erdsze2lem1  27236  snmlff  27363  idomsubgmo  29712
  Copyright terms: Public domain W3C validator