Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlff Structured version   Visualization version   GIF version

Theorem snmlff 30565
 Description: The function 𝐹 from snmlval 30567 is a mapping from positive integers to real numbers in the range [0, 1]. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snmlff.f 𝐹 = (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
Assertion
Ref Expression
snmlff 𝐹:ℕ⟶(0[,]1)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)   𝐹(𝑘,𝑛)

Proof of Theorem snmlff
StepHypRef Expression
1 snmlff.f . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
2 fzfid 12634 . . . . . . 7 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
3 ssrab2 3650 . . . . . . 7 {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛)
4 ssfi 8065 . . . . . . 7 (((1...𝑛) ∈ Fin ∧ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛)) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin)
52, 3, 4sylancl 693 . . . . . 6 (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin)
6 hashcl 13009 . . . . . 6 ({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin → (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℕ0)
75, 6syl 17 . . . . 5 (𝑛 ∈ ℕ → (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℕ0)
87nn0red 11229 . . . 4 (𝑛 ∈ ℕ → (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ)
9 nndivre 10933 . . . 4 (((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ)
108, 9mpancom 700 . . 3 (𝑛 ∈ ℕ → ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ)
117nn0ge0d 11231 . . . 4 (𝑛 ∈ ℕ → 0 ≤ (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}))
12 nnre 10904 . . . 4 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
13 nngt0 10926 . . . 4 (𝑛 ∈ ℕ → 0 < 𝑛)
14 divge0 10771 . . . 4 ((((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 0 ≤ (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵})) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
158, 11, 12, 13, 14syl22anc 1319 . . 3 (𝑛 ∈ ℕ → 0 ≤ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
16 ssdomg 7887 . . . . . . . 8 ((1...𝑛) ∈ Fin → ({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
172, 3, 16mpisyl 21 . . . . . . 7 (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛))
18 hashdom 13029 . . . . . . . 8 (({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (#‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
195, 2, 18syl2anc 691 . . . . . . 7 (𝑛 ∈ ℕ → ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (#‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
2017, 19mpbird 246 . . . . . 6 (𝑛 ∈ ℕ → (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (#‘(1...𝑛)))
21 nnnn0 11176 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
22 hashfz1 12996 . . . . . . 7 (𝑛 ∈ ℕ0 → (#‘(1...𝑛)) = 𝑛)
2321, 22syl 17 . . . . . 6 (𝑛 ∈ ℕ → (#‘(1...𝑛)) = 𝑛)
2420, 23breqtrd 4609 . . . . 5 (𝑛 ∈ ℕ → (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ 𝑛)
25 nncn 10905 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2625mulid1d 9936 . . . . 5 (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛)
2724, 26breqtrrd 4611 . . . 4 (𝑛 ∈ ℕ → (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1))
28 1red 9934 . . . . 5 (𝑛 ∈ ℕ → 1 ∈ ℝ)
29 ledivmul 10778 . . . . 5 (((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1)))
308, 28, 12, 13, 29syl112anc 1322 . . . 4 (𝑛 ∈ ℕ → (((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1)))
3127, 30mpbird 246 . . 3 (𝑛 ∈ ℕ → ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1)
32 0re 9919 . . . 4 0 ∈ ℝ
33 1re 9918 . . . 4 1 ∈ ℝ
3432, 33elicc2i 12110 . . 3 (((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1) ↔ (((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ ∧ 0 ≤ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∧ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1))
3510, 15, 31, 34syl3anbrc 1239 . 2 (𝑛 ∈ ℕ → ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1))
361, 35fmpti 6291 1 𝐹:ℕ⟶(0[,]1)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   = wceq 1475   ∈ wcel 1977  {crab 2900   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ≼ cdom 7839  Fincfn 7841  ℝcr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953   ≤ cle 9954   / cdiv 10563  ℕcn 10897  ℕ0cn0 11169  [,]cicc 12049  ...cfz 12197  ⌊cfl 12453   mod cmo 12530  ↑cexp 12722  #chash 12979 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-icc 12053  df-fz 12198  df-hash 12980 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator