Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem3 Structured version   Visualization version   GIF version

Theorem birthdaylem3 24480
 Description: For general 𝑁 and 𝐾, upper-bound the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((#‘𝑇) / (#‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthdaylem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 birthday.t . . . . . . . 8 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
2 abn0 3908 . . . . . . . . . . . 12 ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ ∃𝑓 𝑓:(1...𝐾)–1-1→(1...𝑁))
3 ovex 6577 . . . . . . . . . . . . 13 (1...𝑁) ∈ V
43brdom 7853 . . . . . . . . . . . 12 ((1...𝐾) ≼ (1...𝑁) ↔ ∃𝑓 𝑓:(1...𝐾)–1-1→(1...𝑁))
52, 4bitr4i 266 . . . . . . . . . . 11 ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ (1...𝐾) ≼ (1...𝑁))
6 hashfz1 12996 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (#‘(1...𝐾)) = 𝐾)
7 nnnn0 11176 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
8 hashfz1 12996 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (#‘(1...𝑁)) = 𝑁)
97, 8syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#‘(1...𝑁)) = 𝑁)
106, 9breqan12d 4599 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((#‘(1...𝐾)) ≤ (#‘(1...𝑁)) ↔ 𝐾𝑁))
11 fzfid 12634 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (1...𝐾) ∈ Fin)
12 fzfid 12634 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (1...𝑁) ∈ Fin)
13 hashdom 13029 . . . . . . . . . . . . 13 (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((#‘(1...𝐾)) ≤ (#‘(1...𝑁)) ↔ (1...𝐾) ≼ (1...𝑁)))
1411, 12, 13syl2anc 691 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((#‘(1...𝐾)) ≤ (#‘(1...𝑁)) ↔ (1...𝐾) ≼ (1...𝑁)))
15 nn0re 11178 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
16 nnre 10904 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
17 lenlt 9995 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1815, 16, 17syl2an 493 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1910, 14, 183bitr3d 297 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((1...𝐾) ≼ (1...𝑁) ↔ ¬ 𝑁 < 𝐾))
205, 19syl5bb 271 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ≠ ∅ ↔ ¬ 𝑁 < 𝐾))
2120necon4abid 2822 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ({𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} = ∅ ↔ 𝑁 < 𝐾))
2221biimpar 501 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} = ∅)
231, 22syl5eq 2656 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 𝑇 = ∅)
2423fveq2d 6107 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (#‘𝑇) = (#‘∅))
25 hash0 13019 . . . . . 6 (#‘∅) = 0
2624, 25syl6eq 2660 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (#‘𝑇) = 0)
2726oveq1d 6564 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((#‘𝑇) / (#‘𝑆)) = (0 / (#‘𝑆)))
28 birthday.s . . . . . . . . . 10 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
2928, 1birthdaylem1 24478 . . . . . . . . 9 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
3029simp3i 1065 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
3130ad2antlr 759 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 𝑆 ≠ ∅)
3229simp2i 1064 . . . . . . . 8 𝑆 ∈ Fin
33 hashnncl 13018 . . . . . . . 8 (𝑆 ∈ Fin → ((#‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅))
3432, 33ax-mp 5 . . . . . . 7 ((#‘𝑆) ∈ ℕ ↔ 𝑆 ≠ ∅)
3531, 34sylibr 223 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (#‘𝑆) ∈ ℕ)
3635nncnd 10913 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (#‘𝑆) ∈ ℂ)
3735nnne0d 10942 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (#‘𝑆) ≠ 0)
3836, 37div0d 10679 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (0 / (#‘𝑆)) = 0)
3927, 38eqtrd 2644 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((#‘𝑇) / (#‘𝑆)) = 0)
4015adantr 480 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℝ)
4140resqcld 12897 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾↑2) ∈ ℝ)
4241, 40resubcld 10337 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝐾↑2) − 𝐾) ∈ ℝ)
4342rehalfcld 11156 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (((𝐾↑2) − 𝐾) / 2) ∈ ℝ)
44 nndivre 10933 . . . . . . . 8 (((((𝐾↑2) − 𝐾) / 2) ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4543, 44sylancom 698 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4645renegcld 10336 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4746adantr 480 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
4847rpefcld 14674 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)) ∈ ℝ+)
4948rpge0d 11752 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → 0 ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
5039, 49eqbrtrd 4605 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝑁 < 𝐾) → ((#‘𝑇) / (#‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
51 simplr 788 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℕ)
52 simpr 476 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾𝑁)
53 simpll 786 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ ℕ0)
54 nn0uz 11598 . . . . . . 7 0 = (ℤ‘0)
5553, 54syl6eleq 2698 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ (ℤ‘0))
56 nnz 11276 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
5756ad2antlr 759 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℤ)
58 elfz5 12205 . . . . . 6 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
5955, 57, 58syl2anc 691 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
6052, 59mpbird 246 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ (0...𝑁))
6128, 1birthdaylem2 24479 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((#‘𝑇) / (#‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
6251, 60, 61syl2anc 691 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → ((#‘𝑇) / (#‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
63 fzfid 12634 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (0...(𝐾 − 1)) ∈ Fin)
64 elfznn0 12302 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
6564adantl 481 . . . . . . . . . . . 12 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℕ0)
6665nn0red 11229 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℝ)
6753nn0red 11229 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝐾 ∈ ℝ)
68 peano2rem 10227 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
6967, 68syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) ∈ ℝ)
7069adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈ ℝ)
7151adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ)
7271nnred 10912 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℝ)
73 elfzle2 12216 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ≤ (𝐾 − 1))
7473adantl 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ≤ (𝐾 − 1))
7551nnred 10912 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℝ)
7667ltm1d 10835 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) < 𝐾)
7769, 67, 75, 76, 52ltletrd 10076 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (𝐾 − 1) < 𝑁)
7877adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) < 𝑁)
7966, 70, 72, 74, 78lelttrd 10074 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 < 𝑁)
8071nncnd 10913 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
8180mulid1d 9936 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑁 · 1) = 𝑁)
8279, 81breqtrrd 4611 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 < (𝑁 · 1))
83 1red 9934 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 1 ∈ ℝ)
8471nngt0d 10941 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 < 𝑁)
85 ltdivmul 10777 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑘 / 𝑁) < 1 ↔ 𝑘 < (𝑁 · 1)))
8666, 83, 72, 84, 85syl112anc 1322 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑘 / 𝑁) < 1 ↔ 𝑘 < (𝑁 · 1)))
8782, 86mpbird 246 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) < 1)
8866, 71nndivred 10946 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) ∈ ℝ)
89 1re 9918 . . . . . . . . 9 1 ∈ ℝ
90 difrp 11744 . . . . . . . . 9 (((𝑘 / 𝑁) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑘 / 𝑁) < 1 ↔ (1 − (𝑘 / 𝑁)) ∈ ℝ+))
9188, 89, 90sylancl 693 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑘 / 𝑁) < 1 ↔ (1 − (𝑘 / 𝑁)) ∈ ℝ+))
9287, 91mpbid 221 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (1 − (𝑘 / 𝑁)) ∈ ℝ+)
9392relogcld 24173 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘(1 − (𝑘 / 𝑁))) ∈ ℝ)
9488renegcld 10336 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → -(𝑘 / 𝑁) ∈ ℝ)
95 elfzle1 12215 . . . . . . . . . . . 12 (𝑘 ∈ (0...(𝐾 − 1)) → 0 ≤ 𝑘)
9695adantl 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 ≤ 𝑘)
97 divge0 10771 . . . . . . . . . . 11 (((𝑘 ∈ ℝ ∧ 0 ≤ 𝑘) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑘 / 𝑁))
9866, 96, 72, 84, 97syl22anc 1319 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 ≤ (𝑘 / 𝑁))
9988, 98, 87eflegeo 14690 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))))
10088reefcld 14657 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(𝑘 / 𝑁)) ∈ ℝ)
101 efgt0 14672 . . . . . . . . . . 11 ((𝑘 / 𝑁) ∈ ℝ → 0 < (exp‘(𝑘 / 𝑁)))
10288, 101syl 17 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 0 < (exp‘(𝑘 / 𝑁)))
10392rpregt0d 11754 . . . . . . . . . 10 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((1 − (𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (1 − (𝑘 / 𝑁))))
104 lerec2 10790 . . . . . . . . . 10 ((((exp‘(𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (exp‘(𝑘 / 𝑁))) ∧ ((1 − (𝑘 / 𝑁)) ∈ ℝ ∧ 0 < (1 − (𝑘 / 𝑁)))) → ((exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))) ↔ (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁)))))
105100, 102, 103, 104syl21anc 1317 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((exp‘(𝑘 / 𝑁)) ≤ (1 / (1 − (𝑘 / 𝑁))) ↔ (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁)))))
10699, 105mpbid 221 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (1 − (𝑘 / 𝑁)) ≤ (1 / (exp‘(𝑘 / 𝑁))))
10792reeflogd 24174 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(log‘(1 − (𝑘 / 𝑁)))) = (1 − (𝑘 / 𝑁)))
10888recnd 9947 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑘 / 𝑁) ∈ ℂ)
109 efneg 14667 . . . . . . . . 9 ((𝑘 / 𝑁) ∈ ℂ → (exp‘-(𝑘 / 𝑁)) = (1 / (exp‘(𝑘 / 𝑁))))
110108, 109syl 17 . . . . . . . 8 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘-(𝑘 / 𝑁)) = (1 / (exp‘(𝑘 / 𝑁))))
111106, 107, 1103brtr4d 4615 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁)))
112 efle 14687 . . . . . . . 8 (((log‘(1 − (𝑘 / 𝑁))) ∈ ℝ ∧ -(𝑘 / 𝑁) ∈ ℝ) → ((log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁) ↔ (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁))))
11393, 94, 112syl2anc 691 . . . . . . 7 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁) ↔ (exp‘(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-(𝑘 / 𝑁))))
114111, 113mpbird 246 . . . . . 6 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘(1 − (𝑘 / 𝑁))) ≤ -(𝑘 / 𝑁))
11563, 93, 94, 114fsumle 14372 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁))
11663, 108fsumneg 14361 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁) = -Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁))
11751nncnd 10913 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ∈ ℂ)
11866recnd 9947 . . . . . . . . 9 ((((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
119 nnne0 10930 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
120119ad2antlr 759 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → 𝑁 ≠ 0)
12163, 117, 118, 120fsumdivc 14360 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 / 𝑁) = Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁))
122 arisum2 14432 . . . . . . . . . 10 (𝐾 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 = (((𝐾↑2) − 𝐾) / 2))
12353, 122syl 17 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 = (((𝐾↑2) − 𝐾) / 2))
124123oveq1d 6564 . . . . . . . 8 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))𝑘 / 𝑁) = ((((𝐾↑2) − 𝐾) / 2) / 𝑁))
125121, 124eqtr3d 2646 . . . . . . 7 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁) = ((((𝐾↑2) − 𝐾) / 2) / 𝑁))
126125negeqd 10154 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → -Σ𝑘 ∈ (0...(𝐾 − 1))(𝑘 / 𝑁) = -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
127116, 126eqtrd 2644 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))-(𝑘 / 𝑁) = -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
128115, 127breqtrd 4609 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁))
12963, 93fsumrecl 14312 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ∈ ℝ)
13046adantr 480 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ)
131 efle 14687 . . . . 5 ((Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ∈ ℝ ∧ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ∈ ℝ) → (Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))))
132129, 130, 131syl2anc 691 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))) ≤ -((((𝐾↑2) − 𝐾) / 2) / 𝑁) ↔ (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁))))
133128, 132mpbid 221 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
13462, 133eqbrtrd 4605 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ) ∧ 𝐾𝑁) → ((#‘𝑇) / (#‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
13516adantl 481 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
13650, 134, 135, 40ltlecasei 10024 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((#‘𝑇) / (#‘𝑆)) ≤ (exp‘-((((𝐾↑2) − 𝐾) / 2) / 𝑁)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596   ≠ wne 2780   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583  ⟶wf 5800  –1-1→wf1 5801  ‘cfv 5804  (class class class)co 6549   ≼ cdom 7839  Fincfn 7841  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  ...cfz 12197  ↑cexp 12722  #chash 12979  Σcsu 14264  expce 14631  logclog 24105 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107 This theorem is referenced by:  birthday  24481
 Copyright terms: Public domain W3C validator