MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ram0 Structured version   Visualization version   GIF version

Theorem ram0 15564
Description: The Ramsey number when 𝑅 = ∅. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ram0 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀)

Proof of Theorem ram0
Dummy variables 𝑏 𝑓 𝑐 𝑠 𝑥 𝑎 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖}) = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
2 id 22 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ ℕ0)
3 0ex 4718 . . . 4 ∅ ∈ V
43a1i 11 . . 3 (𝑀 ∈ ℕ0 → ∅ ∈ V)
5 f0 5999 . . . 4 ∅:∅⟶ℕ0
65a1i 11 . . 3 (𝑀 ∈ ℕ0 → ∅:∅⟶ℕ0)
7 f00 6000 . . . . 5 (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶∅ ↔ (𝑓 = ∅ ∧ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅))
8 vex 3176 . . . . . . . . . 10 𝑠 ∈ V
9 simpl 472 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → 𝑀 ∈ ℕ0)
101hashbcval 15544 . . . . . . . . . 10 ((𝑠 ∈ V ∧ 𝑀 ∈ ℕ0) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = {𝑥 ∈ 𝒫 𝑠 ∣ (#‘𝑥) = 𝑀})
118, 9, 10sylancr 694 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = {𝑥 ∈ 𝒫 𝑠 ∣ (#‘𝑥) = 𝑀})
12 hashfz1 12996 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (#‘(1...𝑀)) = 𝑀)
1312breq1d 4593 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0 → ((#‘(1...𝑀)) ≤ (#‘𝑠) ↔ 𝑀 ≤ (#‘𝑠)))
1413biimpar 501 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (#‘(1...𝑀)) ≤ (#‘𝑠))
15 fzfid 12634 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (1...𝑀) ∈ Fin)
16 hashdom 13029 . . . . . . . . . . . . . . 15 (((1...𝑀) ∈ Fin ∧ 𝑠 ∈ V) → ((#‘(1...𝑀)) ≤ (#‘𝑠) ↔ (1...𝑀) ≼ 𝑠))
1715, 8, 16sylancl 693 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ((#‘(1...𝑀)) ≤ (#‘𝑠) ↔ (1...𝑀) ≼ 𝑠))
1814, 17mpbid 221 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (1...𝑀) ≼ 𝑠)
198domen 7854 . . . . . . . . . . . . 13 ((1...𝑀) ≼ 𝑠 ↔ ∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠))
2018, 19sylib 207 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠))
21 simprr 792 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → 𝑥𝑠)
22 selpw 4115 . . . . . . . . . . . . . . . 16 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
2321, 22sylibr 223 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → 𝑥 ∈ 𝒫 𝑠)
24 hasheni 12998 . . . . . . . . . . . . . . . . 17 ((1...𝑀) ≈ 𝑥 → (#‘(1...𝑀)) = (#‘𝑥))
2524ad2antrl 760 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (#‘(1...𝑀)) = (#‘𝑥))
2612ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (#‘(1...𝑀)) = 𝑀)
2725, 26eqtr3d 2646 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (#‘𝑥) = 𝑀)
2823, 27jca 553 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) ∧ ((1...𝑀) ≈ 𝑥𝑥𝑠)) → (𝑥 ∈ 𝒫 𝑠 ∧ (#‘𝑥) = 𝑀))
2928ex 449 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (((1...𝑀) ≈ 𝑥𝑥𝑠) → (𝑥 ∈ 𝒫 𝑠 ∧ (#‘𝑥) = 𝑀)))
3029eximdv 1833 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (∃𝑥((1...𝑀) ≈ 𝑥𝑥𝑠) → ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (#‘𝑥) = 𝑀)))
3120, 30mpd 15 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (#‘𝑥) = 𝑀))
32 df-rex 2902 . . . . . . . . . . 11 (∃𝑥 ∈ 𝒫 𝑠(#‘𝑥) = 𝑀 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝑠 ∧ (#‘𝑥) = 𝑀))
3331, 32sylibr 223 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ∃𝑥 ∈ 𝒫 𝑠(#‘𝑥) = 𝑀)
34 rabn0 3912 . . . . . . . . . 10 ({𝑥 ∈ 𝒫 𝑠 ∣ (#‘𝑥) = 𝑀} ≠ ∅ ↔ ∃𝑥 ∈ 𝒫 𝑠(#‘𝑥) = 𝑀)
3533, 34sylibr 223 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → {𝑥 ∈ 𝒫 𝑠 ∣ (#‘𝑥) = 𝑀} ≠ ∅)
3611, 35eqnetrd 2849 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ≠ ∅)
3736neneqd 2787 . . . . . . 7 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ¬ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅)
3837pm2.21d 117 . . . . . 6 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ((𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅ → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
3938adantld 482 . . . . 5 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → ((𝑓 = ∅ ∧ (𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅) → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
407, 39syl5bi 231 . . . 4 ((𝑀 ∈ ℕ0𝑀 ≤ (#‘𝑠)) → (𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶∅ → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐}))))
4140impr 647 . . 3 ((𝑀 ∈ ℕ0 ∧ (𝑀 ≤ (#‘𝑠) ∧ 𝑓:(𝑠(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶∅)) → ∃𝑐 ∈ ∅ ∃𝑥 ∈ 𝒫 𝑠((∅‘𝑐) ≤ (#‘𝑥) ∧ (𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (𝑓 “ {𝑐})))
421, 2, 4, 6, 2, 41ramub 15555 . 2 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ≤ 𝑀)
43 nnnn0 11176 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
443a1i 11 . . . . . 6 (𝑀 ∈ ℕ → ∅ ∈ V)
455a1i 11 . . . . . 6 (𝑀 ∈ ℕ → ∅:∅⟶ℕ0)
46 nnm1nn0 11211 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
47 f0 5999 . . . . . . 7 ∅:∅⟶∅
48 fzfid 12634 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (1...(𝑀 − 1)) ∈ Fin)
491hashbc2 15548 . . . . . . . . . . 11 (((1...(𝑀 − 1)) ∈ Fin ∧ 𝑀 ∈ ℕ0) → (#‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)) = ((#‘(1...(𝑀 − 1)))C𝑀))
5048, 43, 49syl2anc 691 . . . . . . . . . 10 (𝑀 ∈ ℕ → (#‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)) = ((#‘(1...(𝑀 − 1)))C𝑀))
51 hashfz1 12996 . . . . . . . . . . . 12 ((𝑀 − 1) ∈ ℕ0 → (#‘(1...(𝑀 − 1))) = (𝑀 − 1))
5246, 51syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (#‘(1...(𝑀 − 1))) = (𝑀 − 1))
5352oveq1d 6564 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((#‘(1...(𝑀 − 1)))C𝑀) = ((𝑀 − 1)C𝑀))
54 nnz 11276 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
55 nnre 10904 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5655ltm1d 10835 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑀 − 1) < 𝑀)
5756olcd 407 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 < 0 ∨ (𝑀 − 1) < 𝑀))
58 bcval4 12956 . . . . . . . . . . 11 (((𝑀 − 1) ∈ ℕ0𝑀 ∈ ℤ ∧ (𝑀 < 0 ∨ (𝑀 − 1) < 𝑀)) → ((𝑀 − 1)C𝑀) = 0)
5946, 54, 57, 58syl3anc 1318 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((𝑀 − 1)C𝑀) = 0)
6050, 53, 593eqtrd 2648 . . . . . . . . 9 (𝑀 ∈ ℕ → (#‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)) = 0)
61 ovex 6577 . . . . . . . . . 10 ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ∈ V
62 hasheq0 13015 . . . . . . . . . 10 (((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ∈ V → ((#‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)) = 0 ↔ ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅))
6361, 62ax-mp 5 . . . . . . . . 9 ((#‘((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)) = 0 ↔ ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅)
6460, 63sylib 207 . . . . . . . 8 (𝑀 ∈ ℕ → ((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) = ∅)
6564feq2d 5944 . . . . . . 7 (𝑀 ∈ ℕ → (∅:((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶∅ ↔ ∅:∅⟶∅))
6647, 65mpbiri 247 . . . . . 6 (𝑀 ∈ ℕ → ∅:((1...(𝑀 − 1))(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀)⟶∅)
67 noel 3878 . . . . . . . 8 ¬ 𝑐 ∈ ∅
6867pm2.21i 115 . . . . . . 7 (𝑐 ∈ ∅ → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (∅ “ {𝑐}) → (#‘𝑥) < (∅‘𝑐)))
6968ad2antrl 760 . . . . . 6 ((𝑀 ∈ ℕ ∧ (𝑐 ∈ ∅ ∧ 𝑥 ⊆ (1...(𝑀 − 1)))) → ((𝑥(𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})𝑀) ⊆ (∅ “ {𝑐}) → (#‘𝑥) < (∅‘𝑐)))
701, 43, 44, 45, 46, 66, 69ramlb 15561 . . . . 5 (𝑀 ∈ ℕ → (𝑀 − 1) < (𝑀 Ramsey ∅))
71 ramubcl 15560 . . . . . . . 8 (((𝑀 ∈ ℕ0 ∧ ∅ ∈ V ∧ ∅:∅⟶ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ (𝑀 Ramsey ∅) ≤ 𝑀)) → (𝑀 Ramsey ∅) ∈ ℕ0)
722, 4, 6, 2, 42, 71syl32anc 1326 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ∈ ℕ0)
7343, 72syl 17 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 Ramsey ∅) ∈ ℕ0)
74 nn0lem1lt 11318 . . . . . 6 ((𝑀 ∈ ℕ0 ∧ (𝑀 Ramsey ∅) ∈ ℕ0) → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ (𝑀 − 1) < (𝑀 Ramsey ∅)))
7543, 73, 74syl2anc 691 . . . . 5 (𝑀 ∈ ℕ → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ (𝑀 − 1) < (𝑀 Ramsey ∅)))
7670, 75mpbird 246 . . . 4 (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 Ramsey ∅))
7776a1i 11 . . 3 (𝑀 ∈ ℕ0 → (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 Ramsey ∅)))
7872nn0ge0d 11231 . . . 4 (𝑀 ∈ ℕ0 → 0 ≤ (𝑀 Ramsey ∅))
79 breq1 4586 . . . 4 (𝑀 = 0 → (𝑀 ≤ (𝑀 Ramsey ∅) ↔ 0 ≤ (𝑀 Ramsey ∅)))
8078, 79syl5ibrcom 236 . . 3 (𝑀 ∈ ℕ0 → (𝑀 = 0 → 𝑀 ≤ (𝑀 Ramsey ∅)))
81 elnn0 11171 . . . 4 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
8281biimpi 205 . . 3 (𝑀 ∈ ℕ0 → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
8377, 80, 82mpjaod 395 . 2 (𝑀 ∈ ℕ0𝑀 ≤ (𝑀 Ramsey ∅))
8472nn0red 11229 . . 3 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) ∈ ℝ)
85 nn0re 11178 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
8684, 85letri3d 10058 . 2 (𝑀 ∈ ℕ0 → ((𝑀 Ramsey ∅) = 𝑀 ↔ ((𝑀 Ramsey ∅) ≤ 𝑀𝑀 ≤ (𝑀 Ramsey ∅))))
8742, 83, 86mpbir2and 959 1 (𝑀 ∈ ℕ0 → (𝑀 Ramsey ∅) = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  ccnv 5037  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  cen 7838  cdom 7839  Fincfn 7841  0cc0 9815  1c1 9816   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169  cz 11254  ...cfz 12197  Ccbc 12951  #chash 12979   Ramsey cram 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-fac 12923  df-bc 12952  df-hash 12980  df-ram 15543
This theorem is referenced by:  0ramcl  15565  ramcl  15571
  Copyright terms: Public domain W3C validator