MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramlb Structured version   Visualization version   GIF version

Theorem ramlb 15561
Description: Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
ramlb.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
ramlb.m (𝜑𝑀 ∈ ℕ0)
ramlb.r (𝜑𝑅𝑉)
ramlb.f (𝜑𝐹:𝑅⟶ℕ0)
ramlb.s (𝜑𝑁 ∈ ℕ0)
ramlb.g (𝜑𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
ramlb.i ((𝜑 ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (#‘𝑥) < (𝐹𝑐)))
Assertion
Ref Expression
ramlb (𝜑𝑁 < (𝑀 Ramsey 𝐹))
Distinct variable groups:   𝑥,𝑐,𝐶   𝐹,𝑐,𝑥   𝐺,𝑐,𝑥   𝑎,𝑏,𝑐,𝑖,𝑥,𝑀   𝜑,𝑐,𝑥   𝑁,𝑐,𝑥   𝑅,𝑐,𝑥   𝑉,𝑐,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑖,𝑎,𝑏)   𝑁(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramlb
StepHypRef Expression
1 ramlb.c . . . . 5 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
2 ramlb.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
32adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑀 ∈ ℕ0)
4 ramlb.r . . . . . 6 (𝜑𝑅𝑉)
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑅𝑉)
6 ramlb.f . . . . . 6 (𝜑𝐹:𝑅⟶ℕ0)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐹:𝑅⟶ℕ0)
8 ramlb.s . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
98adantr 480 . . . . . 6 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝑁 ∈ ℕ0)
10 simpr 476 . . . . . 6 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ 𝑁)
11 ramubcl 15560 . . . . . 6 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑁 ∈ ℕ0 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁)) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
123, 5, 7, 9, 10, 11syl32anc 1326 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ∈ ℕ0)
13 fzfid 12634 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (1...𝑁) ∈ Fin)
14 hashfz1 12996 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#‘(1...𝑁)) = 𝑁)
158, 14syl 17 . . . . . . 7 (𝜑 → (#‘(1...𝑁)) = 𝑁)
1615breq2d 4595 . . . . . 6 (𝜑 → ((𝑀 Ramsey 𝐹) ≤ (#‘(1...𝑁)) ↔ (𝑀 Ramsey 𝐹) ≤ 𝑁))
1716biimpar 501 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (𝑀 Ramsey 𝐹) ≤ (#‘(1...𝑁)))
18 ramlb.g . . . . . 6 (𝜑𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
1918adantr 480 . . . . 5 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → 𝐺:((1...𝑁)𝐶𝑀)⟶𝑅)
201, 3, 5, 7, 12, 13, 17, 19rami 15557 . . . 4 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ∃𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁)((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
21 elpwi 4117 . . . . . . . . 9 (𝑥 ∈ 𝒫 (1...𝑁) → 𝑥 ⊆ (1...𝑁))
22 ramlb.i . . . . . . . . . . 11 ((𝜑 ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (#‘𝑥) < (𝐹𝑐)))
2322adantlr 747 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → (#‘𝑥) < (𝐹𝑐)))
24 fzfid 12634 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (1...𝑁) ∈ Fin)
25 simprr 792 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → 𝑥 ⊆ (1...𝑁))
26 ssfi 8065 . . . . . . . . . . . . . 14 (((1...𝑁) ∈ Fin ∧ 𝑥 ⊆ (1...𝑁)) → 𝑥 ∈ Fin)
2724, 25, 26syl2anc 691 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → 𝑥 ∈ Fin)
28 hashcl 13009 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → (#‘𝑥) ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (#‘𝑥) ∈ ℕ0)
3029nn0red 11229 . . . . . . . . . . 11 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (#‘𝑥) ∈ ℝ)
31 simpl 472 . . . . . . . . . . . . 13 ((𝑐𝑅𝑥 ⊆ (1...𝑁)) → 𝑐𝑅)
32 ffvelrn 6265 . . . . . . . . . . . . 13 ((𝐹:𝑅⟶ℕ0𝑐𝑅) → (𝐹𝑐) ∈ ℕ0)
337, 31, 32syl2an 493 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (𝐹𝑐) ∈ ℕ0)
3433nn0red 11229 . . . . . . . . . . 11 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → (𝐹𝑐) ∈ ℝ)
3530, 34ltnled 10063 . . . . . . . . . 10 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((#‘𝑥) < (𝐹𝑐) ↔ ¬ (𝐹𝑐) ≤ (#‘𝑥)))
3623, 35sylibd 228 . . . . . . . . 9 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ⊆ (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → ¬ (𝐹𝑐) ≤ (#‘𝑥)))
3721, 36sylanr2 683 . . . . . . . 8 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ((𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐}) → ¬ (𝐹𝑐) ≤ (#‘𝑥)))
3837con2d 128 . . . . . . 7 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ((𝐹𝑐) ≤ (#‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
39 imnan 437 . . . . . . 7 (((𝐹𝑐) ≤ (#‘𝑥) → ¬ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) ↔ ¬ ((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
4038, 39sylib 207 . . . . . 6 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → ¬ ((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})))
4140pm2.21d 117 . . . . 5 (((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) ∧ (𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁))) → (((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4241rexlimdvva 3020 . . . 4 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → (∃𝑐𝑅𝑥 ∈ 𝒫 (1...𝑁)((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝐺 “ {𝑐})) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
4320, 42mpd 15 . . 3 ((𝜑 ∧ (𝑀 Ramsey 𝐹) ≤ 𝑁) → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)
4443pm2.01da 457 . 2 (𝜑 → ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁)
458nn0red 11229 . . . 4 (𝜑𝑁 ∈ ℝ)
4645rexrd 9968 . . 3 (𝜑𝑁 ∈ ℝ*)
47 ramxrcl 15559 . . . 4 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) ∈ ℝ*)
482, 4, 6, 47syl3anc 1318 . . 3 (𝜑 → (𝑀 Ramsey 𝐹) ∈ ℝ*)
49 xrltnle 9984 . . 3 ((𝑁 ∈ ℝ* ∧ (𝑀 Ramsey 𝐹) ∈ ℝ*) → (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
5046, 48, 49syl2anc 691 . 2 (𝜑 → (𝑁 < (𝑀 Ramsey 𝐹) ↔ ¬ (𝑀 Ramsey 𝐹) ≤ 𝑁))
5144, 50mpbird 246 1 (𝜑𝑁 < (𝑀 Ramsey 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  ccnv 5037  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  1c1 9816  *cxr 9952   < clt 9953  cle 9954  0cn0 11169  ...cfz 12197  #chash 12979   Ramsey cram 15541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-ram 15543
This theorem is referenced by:  0ram  15562  ram0  15564
  Copyright terms: Public domain W3C validator