Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashge3el3dif Structured version   Visualization version   GIF version

Theorem hashge3el3dif 13122
 Description: A set with size at least 3 has at least 3 different elements. In contrast to hashge2el2dif 13117, which has an elementary proof, the dominance relation and 1-1 functions from a set with three elements which are known to be different are used to prove this theorem. Although there is also an elementary proof for this theorem, it might be much longer. After all, this proof should be kept because it can be used as template for proofs for higher cardinalities. (Contributed by AV, 20-Mar-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
hashge3el3dif ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
Distinct variable group:   𝑥,𝐷,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem hashge3el3dif
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0nep0 4762 . . . . . . . . 9 ∅ ≠ {∅}
2 0ex 4718 . . . . . . . . . . . 12 ∅ ∈ V
32sneqr 4311 . . . . . . . . . . 11 ({∅} = {{∅}} → ∅ = {∅})
43necon3i 2814 . . . . . . . . . 10 (∅ ≠ {∅} → {∅} ≠ {{∅}})
51, 4ax-mp 5 . . . . . . . . 9 {∅} ≠ {{∅}}
6 snex 4835 . . . . . . . . . 10 {∅} ∈ V
7 snnzg 4251 . . . . . . . . . 10 ({∅} ∈ V → {{∅}} ≠ ∅)
86, 7ax-mp 5 . . . . . . . . 9 {{∅}} ≠ ∅
91, 5, 83pm3.2i 1232 . . . . . . . 8 (∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅)
10 snex 4835 . . . . . . . . . 10 {{∅}} ∈ V
112, 6, 103pm3.2i 1232 . . . . . . . . 9 (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V)
12 hashtpg 13121 . . . . . . . . 9 ((∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V) → ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (#‘{∅, {∅}, {{∅}}}) = 3))
1311, 12ax-mp 5 . . . . . . . 8 ((∅ ≠ {∅} ∧ {∅} ≠ {{∅}} ∧ {{∅}} ≠ ∅) ↔ (#‘{∅, {∅}, {{∅}}}) = 3)
149, 13mpbi 219 . . . . . . 7 (#‘{∅, {∅}, {{∅}}}) = 3
1514eqcomi 2619 . . . . . 6 3 = (#‘{∅, {∅}, {{∅}}})
1615a1i 11 . . . . 5 (𝐷𝑉 → 3 = (#‘{∅, {∅}, {{∅}}}))
1716breq1d 4593 . . . 4 (𝐷𝑉 → (3 ≤ (#‘𝐷) ↔ (#‘{∅, {∅}, {{∅}}}) ≤ (#‘𝐷)))
18 tpfi 8121 . . . . 5 {∅, {∅}, {{∅}}} ∈ Fin
19 hashdom 13029 . . . . 5 (({∅, {∅}, {{∅}}} ∈ Fin ∧ 𝐷𝑉) → ((#‘{∅, {∅}, {{∅}}}) ≤ (#‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
2018, 19mpan 702 . . . 4 (𝐷𝑉 → ((#‘{∅, {∅}, {{∅}}}) ≤ (#‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
2117, 20bitrd 267 . . 3 (𝐷𝑉 → (3 ≤ (#‘𝐷) ↔ {∅, {∅}, {{∅}}} ≼ 𝐷))
22 brdomg 7851 . . . 4 (𝐷𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 ↔ ∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷))
2311a1i 11 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → (∅ ∈ V ∧ {∅} ∈ V ∧ {{∅}} ∈ V))
247necomd 2837 . . . . . . . . . . 11 ({∅} ∈ V → ∅ ≠ {{∅}})
256, 24ax-mp 5 . . . . . . . . . 10 ∅ ≠ {{∅}}
261, 25, 53pm3.2i 1232 . . . . . . . . 9 (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}})
2726a1i 11 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → (∅ ≠ {∅} ∧ ∅ ≠ {{∅}} ∧ {∅} ≠ {{∅}}))
28 simpr 476 . . . . . . . 8 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷)
2923, 27, 28f1dom3el3dif 6426 . . . . . . 7 ((𝐷𝑉𝑓:{∅, {∅}, {{∅}}}–1-1𝐷) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
3029expcom 450 . . . . . 6 (𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → (𝐷𝑉 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3130exlimiv 1845 . . . . 5 (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → (𝐷𝑉 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3231com12 32 . . . 4 (𝐷𝑉 → (∃𝑓 𝑓:{∅, {∅}, {{∅}}}–1-1𝐷 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3322, 32sylbid 229 . . 3 (𝐷𝑉 → ({∅, {∅}, {{∅}}} ≼ 𝐷 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3421, 33sylbid 229 . 2 (𝐷𝑉 → (3 ≤ (#‘𝐷) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧)))
3534imp 444 1 ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  Vcvv 3173  ∅c0 3874  {csn 4125  {ctp 4129   class class class wbr 4583  –1-1→wf1 5801  ‘cfv 5804   ≼ cdom 7839  Fincfn 7841   ≤ cle 9954  3c3 10948  #chash 12979 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980 This theorem is referenced by:  pmtr3ncom  17718
 Copyright terms: Public domain W3C validator