Proof of Theorem hashge2el2dif
Step | Hyp | Ref
| Expression |
1 | | fveq2 6103 |
. . . . . . 7
⊢ (𝐷 = {𝑥} → (#‘𝐷) = (#‘{𝑥})) |
2 | | hashsng 13020 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (#‘{𝑥}) = 1) |
3 | 1, 2 | sylan9eqr 2666 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐷 ∧ 𝐷 = {𝑥}) → (#‘𝐷) = 1) |
4 | 3 | ralimiaa 2935 |
. . . . 5
⊢
(∀𝑥 ∈
𝐷 𝐷 = {𝑥} → ∀𝑥 ∈ 𝐷 (#‘𝐷) = 1) |
5 | | 0re 9919 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ |
6 | | 1re 9918 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
7 | 5, 6 | readdcli 9932 |
. . . . . . . . . . . . . . 15
⊢ (0 + 1)
∈ ℝ |
8 | 7 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → (0 + 1) ∈
ℝ) |
9 | | 2re 10967 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
10 | 9 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → 2 ∈
ℝ) |
11 | | hashcl 13009 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∈ Fin →
(#‘𝐷) ∈
ℕ0) |
12 | 11 | nn0red 11229 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ Fin →
(#‘𝐷) ∈
ℝ) |
13 | 12 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → (#‘𝐷) ∈ ℝ) |
14 | 8, 10, 13 | 3jca 1235 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → ((0 + 1) ∈ ℝ ∧ 2
∈ ℝ ∧ (#‘𝐷) ∈ ℝ)) |
15 | | 0p1e1 11009 |
. . . . . . . . . . . . . . . . 17
⊢ (0 + 1) =
1 |
16 | | 1lt2 11071 |
. . . . . . . . . . . . . . . . 17
⊢ 1 <
2 |
17 | 15, 16 | eqbrtri 4604 |
. . . . . . . . . . . . . . . 16
⊢ (0 + 1)
< 2 |
18 | 17 | jctl 562 |
. . . . . . . . . . . . . . 15
⊢ (2 ≤
(#‘𝐷) → ((0 + 1)
< 2 ∧ 2 ≤ (#‘𝐷))) |
19 | 18 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → ((0 + 1) < 2 ∧ 2 ≤
(#‘𝐷))) |
20 | 19 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → ((0 + 1) < 2 ∧ 2 ≤
(#‘𝐷))) |
21 | | ltleletr 10009 |
. . . . . . . . . . . . 13
⊢ (((0 + 1)
∈ ℝ ∧ 2 ∈ ℝ ∧ (#‘𝐷) ∈ ℝ) → (((0 + 1) < 2
∧ 2 ≤ (#‘𝐷))
→ (0 + 1) ≤ (#‘𝐷))) |
22 | 14, 20, 21 | sylc 63 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → (0 + 1) ≤ (#‘𝐷)) |
23 | 11 | nn0zd 11356 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ Fin →
(#‘𝐷) ∈
ℤ) |
24 | | 0z 11265 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℤ |
25 | 23, 24 | jctil 558 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ Fin → (0 ∈
ℤ ∧ (#‘𝐷)
∈ ℤ)) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → (0 ∈ ℤ ∧
(#‘𝐷) ∈
ℤ)) |
27 | | zltp1le 11304 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℤ ∧ (#‘𝐷) ∈ ℤ) → (0 <
(#‘𝐷) ↔ (0 + 1)
≤ (#‘𝐷))) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → (0 < (#‘𝐷) ↔ (0 + 1) ≤
(#‘𝐷))) |
29 | 22, 28 | mpbird 246 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → 0 < (#‘𝐷)) |
30 | | 0ltpnf 11832 |
. . . . . . . . . . . 12
⊢ 0 <
+∞ |
31 | | simpl 472 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → 𝐷 ∈ 𝑉) |
32 | 31 | anim2i 591 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → (¬ 𝐷 ∈ Fin ∧ 𝐷 ∈ 𝑉)) |
33 | 32 | ancomd 466 |
. . . . . . . . . . . . 13
⊢ ((¬
𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → (𝐷 ∈ 𝑉 ∧ ¬ 𝐷 ∈ Fin)) |
34 | | hashinf 12984 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ 𝑉 ∧ ¬ 𝐷 ∈ Fin) → (#‘𝐷) = +∞) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ ((¬
𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → (#‘𝐷) = +∞) |
36 | 30, 35 | syl5breqr 4621 |
. . . . . . . . . . 11
⊢ ((¬
𝐷 ∈ Fin ∧ (𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷))) → 0 < (#‘𝐷)) |
37 | 29, 36 | pm2.61ian 827 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → 0 < (#‘𝐷)) |
38 | | hashgt0n0 13017 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ 𝑉 ∧ 0 < (#‘𝐷)) → 𝐷 ≠ ∅) |
39 | 37, 38 | syldan 486 |
. . . . . . . . 9
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → 𝐷 ≠ ∅) |
40 | | rspn0 3892 |
. . . . . . . . 9
⊢ (𝐷 ≠ ∅ →
(∀𝑥 ∈ 𝐷 (#‘𝐷) = 1 → (#‘𝐷) = 1)) |
41 | 39, 40 | syl 17 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → (∀𝑥 ∈ 𝐷 (#‘𝐷) = 1 → (#‘𝐷) = 1)) |
42 | 41 | imp 444 |
. . . . . . 7
⊢ (((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) ∧ ∀𝑥 ∈ 𝐷 (#‘𝐷) = 1) → (#‘𝐷) = 1) |
43 | | breq2 4587 |
. . . . . . . . . . 11
⊢
((#‘𝐷) = 1
→ (2 ≤ (#‘𝐷)
↔ 2 ≤ 1)) |
44 | 6, 9 | ltnlei 10037 |
. . . . . . . . . . . . 13
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
45 | | pm2.21 119 |
. . . . . . . . . . . . 13
⊢ (¬ 2
≤ 1 → (2 ≤ 1 → ¬ ∀𝑥 ∈ 𝐷 𝐷 = {𝑥})) |
46 | 44, 45 | sylbi 206 |
. . . . . . . . . . . 12
⊢ (1 < 2
→ (2 ≤ 1 → ¬ ∀𝑥 ∈ 𝐷 𝐷 = {𝑥})) |
47 | 16, 46 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (2 ≤ 1
→ ¬ ∀𝑥
∈ 𝐷 𝐷 = {𝑥}) |
48 | 43, 47 | syl6bi 242 |
. . . . . . . . . 10
⊢
((#‘𝐷) = 1
→ (2 ≤ (#‘𝐷)
→ ¬ ∀𝑥
∈ 𝐷 𝐷 = {𝑥})) |
49 | 48 | com12 32 |
. . . . . . . . 9
⊢ (2 ≤
(#‘𝐷) →
((#‘𝐷) = 1 →
¬ ∀𝑥 ∈
𝐷 𝐷 = {𝑥})) |
50 | 49 | adantl 481 |
. . . . . . . 8
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → ((#‘𝐷) = 1 → ¬ ∀𝑥 ∈ 𝐷 𝐷 = {𝑥})) |
51 | 50 | adantr 480 |
. . . . . . 7
⊢ (((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) ∧ ∀𝑥 ∈ 𝐷 (#‘𝐷) = 1) → ((#‘𝐷) = 1 → ¬ ∀𝑥 ∈ 𝐷 𝐷 = {𝑥})) |
52 | 42, 51 | mpd 15 |
. . . . . 6
⊢ (((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) ∧ ∀𝑥 ∈ 𝐷 (#‘𝐷) = 1) → ¬ ∀𝑥 ∈ 𝐷 𝐷 = {𝑥}) |
53 | 52 | expcom 450 |
. . . . 5
⊢
(∀𝑥 ∈
𝐷 (#‘𝐷) = 1 → ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → ¬ ∀𝑥 ∈ 𝐷 𝐷 = {𝑥})) |
54 | 4, 53 | syl 17 |
. . . 4
⊢
(∀𝑥 ∈
𝐷 𝐷 = {𝑥} → ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → ¬ ∀𝑥 ∈ 𝐷 𝐷 = {𝑥})) |
55 | | ax-1 6 |
. . . 4
⊢ (¬
∀𝑥 ∈ 𝐷 𝐷 = {𝑥} → ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → ¬ ∀𝑥 ∈ 𝐷 𝐷 = {𝑥})) |
56 | 54, 55 | pm2.61i 175 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → ¬ ∀𝑥 ∈ 𝐷 𝐷 = {𝑥}) |
57 | | eqsn 4301 |
. . . . . 6
⊢ (𝐷 ≠ ∅ → (𝐷 = {𝑥} ↔ ∀𝑦 ∈ 𝐷 𝑦 = 𝑥)) |
58 | 39, 57 | syl 17 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → (𝐷 = {𝑥} ↔ ∀𝑦 ∈ 𝐷 𝑦 = 𝑥)) |
59 | | equcom 1932 |
. . . . . . 7
⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) |
60 | 59 | a1i 11 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → (𝑦 = 𝑥 ↔ 𝑥 = 𝑦)) |
61 | 60 | ralbidv 2969 |
. . . . 5
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → (∀𝑦 ∈ 𝐷 𝑦 = 𝑥 ↔ ∀𝑦 ∈ 𝐷 𝑥 = 𝑦)) |
62 | 58, 61 | bitrd 267 |
. . . 4
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → (𝐷 = {𝑥} ↔ ∀𝑦 ∈ 𝐷 𝑥 = 𝑦)) |
63 | 62 | ralbidv 2969 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → (∀𝑥 ∈ 𝐷 𝐷 = {𝑥} ↔ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 = 𝑦)) |
64 | 56, 63 | mtbid 313 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → ¬ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 = 𝑦) |
65 | | df-ne 2782 |
. . . . . 6
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
66 | 65 | rexbii 3023 |
. . . . 5
⊢
(∃𝑦 ∈
𝐷 𝑥 ≠ 𝑦 ↔ ∃𝑦 ∈ 𝐷 ¬ 𝑥 = 𝑦) |
67 | | rexnal 2978 |
. . . . 5
⊢
(∃𝑦 ∈
𝐷 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑦 ∈ 𝐷 𝑥 = 𝑦) |
68 | 66, 67 | bitri 263 |
. . . 4
⊢
(∃𝑦 ∈
𝐷 𝑥 ≠ 𝑦 ↔ ¬ ∀𝑦 ∈ 𝐷 𝑥 = 𝑦) |
69 | 68 | rexbii 3023 |
. . 3
⊢
(∃𝑥 ∈
𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃𝑥 ∈ 𝐷 ¬ ∀𝑦 ∈ 𝐷 𝑥 = 𝑦) |
70 | | rexnal 2978 |
. . 3
⊢
(∃𝑥 ∈
𝐷 ¬ ∀𝑦 ∈ 𝐷 𝑥 = 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 = 𝑦) |
71 | 69, 70 | bitri 263 |
. 2
⊢
(∃𝑥 ∈
𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ¬ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 𝑥 = 𝑦) |
72 | 64, 71 | sylibr 223 |
1
⊢ ((𝐷 ∈ 𝑉 ∧ 2 ≤ (#‘𝐷)) → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦) |