Step | Hyp | Ref
| Expression |
1 | | hashv01gt1 12995 |
. . 3
⊢ (𝐷 ∈ 𝑉 → ((#‘𝐷) = 0 ∨ (#‘𝐷) = 1 ∨ 1 < (#‘𝐷))) |
2 | | hasheq0 13015 |
. . . . . 6
⊢ (𝐷 ∈ 𝑉 → ((#‘𝐷) = 0 ↔ 𝐷 = ∅)) |
3 | | rexeq 3116 |
. . . . . . 7
⊢ (𝐷 = ∅ → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃𝑥 ∈ ∅ ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦)) |
4 | | rex0 3894 |
. . . . . . . 8
⊢ ¬
∃𝑥 ∈ ∅
∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 |
5 | | pm2.21 119 |
. . . . . . . 8
⊢ (¬
∃𝑥 ∈ ∅
∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → (∃𝑥 ∈ ∅ ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷))) |
6 | 4, 5 | mp1i 13 |
. . . . . . 7
⊢ (𝐷 = ∅ → (∃𝑥 ∈ ∅ ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷))) |
7 | 3, 6 | sylbid 229 |
. . . . . 6
⊢ (𝐷 = ∅ → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷))) |
8 | 2, 7 | syl6bi 242 |
. . . . 5
⊢ (𝐷 ∈ 𝑉 → ((#‘𝐷) = 0 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷)))) |
9 | 8 | com12 32 |
. . . 4
⊢
((#‘𝐷) = 0
→ (𝐷 ∈ 𝑉 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷)))) |
10 | | hash1snb 13068 |
. . . . . 6
⊢ (𝐷 ∈ 𝑉 → ((#‘𝐷) = 1 ↔ ∃𝑧 𝐷 = {𝑧})) |
11 | | id 22 |
. . . . . . . . . 10
⊢ (𝐷 = {𝑧} → 𝐷 = {𝑧}) |
12 | | rexeq 3116 |
. . . . . . . . . 10
⊢ (𝐷 = {𝑧} → (∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑥 ≠ 𝑦)) |
13 | 11, 12 | rexeqbidv 3130 |
. . . . . . . . 9
⊢ (𝐷 = {𝑧} → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ ∃𝑥 ∈ {𝑧}∃𝑦 ∈ {𝑧}𝑥 ≠ 𝑦)) |
14 | | vex 3176 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
15 | | neeq1 2844 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑦)) |
16 | 15 | rexbidv 3034 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ {𝑧}𝑥 ≠ 𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧 ≠ 𝑦)) |
17 | 14, 16 | rexsn 4170 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
{𝑧}∃𝑦 ∈ {𝑧}𝑥 ≠ 𝑦 ↔ ∃𝑦 ∈ {𝑧}𝑧 ≠ 𝑦) |
18 | | neeq2 2845 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑧 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧)) |
19 | 14, 18 | rexsn 4170 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
{𝑧}𝑧 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧) |
20 | 17, 19 | bitri 263 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
{𝑧}∃𝑦 ∈ {𝑧}𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧) |
21 | 13, 20 | syl6bb 275 |
. . . . . . . 8
⊢ (𝐷 = {𝑧} → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 ↔ 𝑧 ≠ 𝑧)) |
22 | | equid 1926 |
. . . . . . . . 9
⊢ 𝑧 = 𝑧 |
23 | | eqneqall 2793 |
. . . . . . . . 9
⊢ (𝑧 = 𝑧 → (𝑧 ≠ 𝑧 → 2 ≤ (#‘𝐷))) |
24 | 22, 23 | mp1i 13 |
. . . . . . . 8
⊢ (𝐷 = {𝑧} → (𝑧 ≠ 𝑧 → 2 ≤ (#‘𝐷))) |
25 | 21, 24 | sylbid 229 |
. . . . . . 7
⊢ (𝐷 = {𝑧} → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷))) |
26 | 25 | exlimiv 1845 |
. . . . . 6
⊢
(∃𝑧 𝐷 = {𝑧} → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷))) |
27 | 10, 26 | syl6bi 242 |
. . . . 5
⊢ (𝐷 ∈ 𝑉 → ((#‘𝐷) = 1 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷)))) |
28 | 27 | com12 32 |
. . . 4
⊢
((#‘𝐷) = 1
→ (𝐷 ∈ 𝑉 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷)))) |
29 | | hashnn0pnf 12992 |
. . . . . . . 8
⊢ (𝐷 ∈ 𝑉 → ((#‘𝐷) ∈ ℕ0 ∨
(#‘𝐷) =
+∞)) |
30 | | 1z 11284 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ |
31 | | nn0z 11277 |
. . . . . . . . . . 11
⊢
((#‘𝐷) ∈
ℕ0 → (#‘𝐷) ∈ ℤ) |
32 | | zltp1le 11304 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℤ ∧ (#‘𝐷) ∈ ℤ) → (1 <
(#‘𝐷) ↔ (1 + 1)
≤ (#‘𝐷))) |
33 | 32 | biimpd 218 |
. . . . . . . . . . 11
⊢ ((1
∈ ℤ ∧ (#‘𝐷) ∈ ℤ) → (1 <
(#‘𝐷) → (1 + 1)
≤ (#‘𝐷))) |
34 | 30, 31, 33 | sylancr 694 |
. . . . . . . . . 10
⊢
((#‘𝐷) ∈
ℕ0 → (1 < (#‘𝐷) → (1 + 1) ≤ (#‘𝐷))) |
35 | | df-2 10956 |
. . . . . . . . . . 11
⊢ 2 = (1 +
1) |
36 | 35 | breq1i 4590 |
. . . . . . . . . 10
⊢ (2 ≤
(#‘𝐷) ↔ (1 + 1)
≤ (#‘𝐷)) |
37 | 34, 36 | syl6ibr 241 |
. . . . . . . . 9
⊢
((#‘𝐷) ∈
ℕ0 → (1 < (#‘𝐷) → 2 ≤ (#‘𝐷))) |
38 | | 2re 10967 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
39 | 38 | rexri 9976 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ* |
40 | | pnfge 11840 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℝ* → 2 ≤ +∞) |
41 | 39, 40 | mp1i 13 |
. . . . . . . . . . 11
⊢
((#‘𝐷) =
+∞ → 2 ≤ +∞) |
42 | | breq2 4587 |
. . . . . . . . . . 11
⊢
((#‘𝐷) =
+∞ → (2 ≤ (#‘𝐷) ↔ 2 ≤ +∞)) |
43 | 41, 42 | mpbird 246 |
. . . . . . . . . 10
⊢
((#‘𝐷) =
+∞ → 2 ≤ (#‘𝐷)) |
44 | 43 | a1d 25 |
. . . . . . . . 9
⊢
((#‘𝐷) =
+∞ → (1 < (#‘𝐷) → 2 ≤ (#‘𝐷))) |
45 | 37, 44 | jaoi 393 |
. . . . . . . 8
⊢
(((#‘𝐷) ∈
ℕ0 ∨ (#‘𝐷) = +∞) → (1 < (#‘𝐷) → 2 ≤ (#‘𝐷))) |
46 | 29, 45 | syl 17 |
. . . . . . 7
⊢ (𝐷 ∈ 𝑉 → (1 < (#‘𝐷) → 2 ≤ (#‘𝐷))) |
47 | 46 | impcom 445 |
. . . . . 6
⊢ ((1 <
(#‘𝐷) ∧ 𝐷 ∈ 𝑉) → 2 ≤ (#‘𝐷)) |
48 | 47 | a1d 25 |
. . . . 5
⊢ ((1 <
(#‘𝐷) ∧ 𝐷 ∈ 𝑉) → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷))) |
49 | 48 | ex 449 |
. . . 4
⊢ (1 <
(#‘𝐷) → (𝐷 ∈ 𝑉 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷)))) |
50 | 9, 28, 49 | 3jaoi 1383 |
. . 3
⊢
(((#‘𝐷) = 0
∨ (#‘𝐷) = 1 ∨ 1
< (#‘𝐷)) →
(𝐷 ∈ 𝑉 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷)))) |
51 | 1, 50 | mpcom 37 |
. 2
⊢ (𝐷 ∈ 𝑉 → (∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦 → 2 ≤ (#‘𝐷))) |
52 | 51 | imp 444 |
1
⊢ ((𝐷 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 𝑥 ≠ 𝑦) → 2 ≤ (#‘𝐷)) |