Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ltpnf | Structured version Visualization version GIF version |
Description: Zero is less than plus infinity (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0ltpnf | ⊢ 0 < +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 9919 | . 2 ⊢ 0 ∈ ℝ | |
2 | ltpnf 11830 | . 2 ⊢ (0 ∈ ℝ → 0 < +∞) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 < +∞ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 class class class wbr 4583 ℝcr 9814 0cc0 9815 +∞cpnf 9950 < clt 9953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-i2m1 9883 ax-1ne0 9884 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-iota 5768 df-fv 5812 df-ov 6552 df-pnf 9955 df-xr 9957 df-ltxr 9958 |
This theorem is referenced by: xmulgt0 11985 reltxrnmnf 12043 hashneq0 13016 hashge2el2dif 13117 sgnpnf 13681 pnfnei 20834 0bdop 28236 xlt2addrd 28913 xrge0mulc1cn 29315 pnfneige0 29325 lmxrge0 29326 mbfposadd 32627 ftc1anclem5 32659 fourierdlem111 39110 fouriersw 39124 |
Copyright terms: Public domain | W3C validator |