MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ltpnf Structured version   Unicode version

Theorem 0ltpnf 11357
Description: Zero is less than plus infinity (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
0ltpnf  |-  0  < +oo

Proof of Theorem 0ltpnf
StepHypRef Expression
1 0re 9613 . 2  |-  0  e.  RR
2 ltpnf 11356 . 2  |-  ( 0  e.  RR  ->  0  < +oo )
31, 2ax-mp 5 1  |-  0  < +oo
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1819   class class class wbr 4456   RRcr 9508   0cc0 9509   +oocpnf 9642    < clt 9645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-i2m1 9577  ax-1ne0 9578  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-xp 5014  df-iota 5557  df-fv 5602  df-ov 6299  df-pnf 9647  df-xr 9649  df-ltxr 9650
This theorem is referenced by:  xmulgt0  11500  hashneq0  12437  hashge2el2dif  12525  sgnpnf  12938  pnfnei  19848  0bdop  27039  xlt2addrd  27735  xrge0mulc1cn  28084  pnfneige0  28094  lmxrge0  28095  mbfposadd  30267  ftc1anclem5  30299  fourierdlem111  32203  fouriersw  32217
  Copyright terms: Public domain W3C validator