Step | Hyp | Ref
| Expression |
1 | | dmexg 6989 |
. . . . . 6
⊢ (𝐺 ∈ V → dom 𝐺 ∈ V) |
2 | | hashge2el2dif 13117 |
. . . . . . 7
⊢ ((dom
𝐺 ∈ V ∧ 2 ≤
(#‘dom 𝐺)) →
∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏) |
3 | 2 | ex 449 |
. . . . . 6
⊢ (dom
𝐺 ∈ V → (2 ≤
(#‘dom 𝐺) →
∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏)) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ V → (2 ≤
(#‘dom 𝐺) →
∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏)) |
5 | | df-ne 2782 |
. . . . . . . 8
⊢ (𝑎 ≠ 𝑏 ↔ ¬ 𝑎 = 𝑏) |
6 | | elvv 5100 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ (V × V) ↔
∃𝑥∃𝑦 𝐺 = 〈𝑥, 𝑦〉) |
7 | | difeq1 3683 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (𝐺 ∖ {∅}) = (〈𝑥, 𝑦〉 ∖ {∅})) |
8 | 7 | funeqd 5825 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (Fun (𝐺 ∖ {∅}) ↔ Fun (〈𝑥, 𝑦〉 ∖ {∅}))) |
9 | | 0nelop 4886 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ¬
∅ ∈ 〈𝑥,
𝑦〉 |
10 | | disjsn 4192 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((〈𝑥, 𝑦〉 ∩ {∅}) =
∅ ↔ ¬ ∅ ∈ 〈𝑥, 𝑦〉) |
11 | 9, 10 | mpbir 220 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑥, 𝑦〉 ∩ {∅}) =
∅ |
12 | | disjdif2 3999 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((〈𝑥, 𝑦〉 ∩ {∅}) =
∅ → (〈𝑥,
𝑦〉 ∖ {∅})
= 〈𝑥, 𝑦〉) |
13 | 11, 12 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈𝑥, 𝑦〉 ∖ {∅}) =
〈𝑥, 𝑦〉 |
14 | 13 | funeqi 5824 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
(〈𝑥, 𝑦〉 ∖ {∅}) ↔
Fun 〈𝑥, 𝑦〉) |
15 | | vex 3176 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑥 ∈ V |
16 | | vex 3176 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑦 ∈ V |
17 | 15, 16 | funop 6320 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Fun
〈𝑥, 𝑦〉 ↔ ∃𝑐(𝑥 = {𝑐} ∧ 〈𝑥, 𝑦〉 = {〈𝑐, 𝑐〉})) |
18 | | eqeq2 2621 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(〈𝑥, 𝑦〉 = {〈𝑐, 𝑐〉} → (𝐺 = 〈𝑥, 𝑦〉 ↔ 𝐺 = {〈𝑐, 𝑐〉})) |
19 | | dmeq 5246 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐺 = {〈𝑐, 𝑐〉} → dom 𝐺 = dom {〈𝑐, 𝑐〉}) |
20 | | vex 3176 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑐 ∈ V |
21 | 20 | dmsnop 5527 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ dom
{〈𝑐, 𝑐〉} = {𝑐} |
22 | 19, 21 | syl6eq 2660 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐺 = {〈𝑐, 𝑐〉} → dom 𝐺 = {𝑐}) |
23 | | eleq2 2677 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (dom
𝐺 = {𝑐} → (𝑎 ∈ dom 𝐺 ↔ 𝑎 ∈ {𝑐})) |
24 | | velsn 4141 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 ∈ {𝑐} ↔ 𝑎 = 𝑐) |
25 | 23, 24 | syl6bb 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (dom
𝐺 = {𝑐} → (𝑎 ∈ dom 𝐺 ↔ 𝑎 = 𝑐)) |
26 | | eleq2 2677 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (dom
𝐺 = {𝑐} → (𝑏 ∈ dom 𝐺 ↔ 𝑏 ∈ {𝑐})) |
27 | | velsn 4141 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑏 ∈ {𝑐} ↔ 𝑏 = 𝑐) |
28 | 26, 27 | syl6bb 275 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (dom
𝐺 = {𝑐} → (𝑏 ∈ dom 𝐺 ↔ 𝑏 = 𝑐)) |
29 | | equtr2 1941 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → 𝑎 = 𝑏) |
30 | 29 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → (𝐺 ∈ V → 𝑎 = 𝑏)) |
31 | 30 | expcom 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑏 = 𝑐 → (𝑎 = 𝑐 → (𝐺 ∈ V → 𝑎 = 𝑏))) |
32 | 28, 31 | syl6bi 242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (dom
𝐺 = {𝑐} → (𝑏 ∈ dom 𝐺 → (𝑎 = 𝑐 → (𝐺 ∈ V → 𝑎 = 𝑏)))) |
33 | 32 | com23 84 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (dom
𝐺 = {𝑐} → (𝑎 = 𝑐 → (𝑏 ∈ dom 𝐺 → (𝐺 ∈ V → 𝑎 = 𝑏)))) |
34 | 25, 33 | sylbid 229 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (dom
𝐺 = {𝑐} → (𝑎 ∈ dom 𝐺 → (𝑏 ∈ dom 𝐺 → (𝐺 ∈ V → 𝑎 = 𝑏)))) |
35 | 34 | impd 446 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (dom
𝐺 = {𝑐} → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (𝐺 ∈ V → 𝑎 = 𝑏))) |
36 | 22, 35 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺 = {〈𝑐, 𝑐〉} → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (𝐺 ∈ V → 𝑎 = 𝑏))) |
37 | 18, 36 | syl6bi 242 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈𝑥, 𝑦〉 = {〈𝑐, 𝑐〉} → (𝐺 = 〈𝑥, 𝑦〉 → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (𝐺 ∈ V → 𝑎 = 𝑏)))) |
38 | 37 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 = {𝑐} ∧ 〈𝑥, 𝑦〉 = {〈𝑐, 𝑐〉}) → (𝐺 = 〈𝑥, 𝑦〉 → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (𝐺 ∈ V → 𝑎 = 𝑏)))) |
39 | 38 | exlimiv 1845 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑐(𝑥 = {𝑐} ∧ 〈𝑥, 𝑦〉 = {〈𝑐, 𝑐〉}) → (𝐺 = 〈𝑥, 𝑦〉 → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (𝐺 ∈ V → 𝑎 = 𝑏)))) |
40 | 39 | com12 32 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (∃𝑐(𝑥 = {𝑐} ∧ 〈𝑥, 𝑦〉 = {〈𝑐, 𝑐〉}) → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (𝐺 ∈ V → 𝑎 = 𝑏)))) |
41 | 17, 40 | syl5bi 231 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (Fun 〈𝑥, 𝑦〉 → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (𝐺 ∈ V → 𝑎 = 𝑏)))) |
42 | 14, 41 | syl5bi 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (Fun (〈𝑥, 𝑦〉 ∖ {∅}) → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (𝐺 ∈ V → 𝑎 = 𝑏)))) |
43 | 8, 42 | sylbid 229 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (Fun (𝐺 ∖ {∅}) → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (𝐺 ∈ V → 𝑎 = 𝑏)))) |
44 | 43 | com23 84 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 = 〈𝑥, 𝑦〉 → ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (Fun (𝐺 ∖ {∅}) → (𝐺 ∈ V → 𝑎 = 𝑏)))) |
45 | 44 | 3impd 1273 |
. . . . . . . . . . . . . 14
⊢ (𝐺 = 〈𝑥, 𝑦〉 → (((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅}) ∧ 𝐺 ∈ V) → 𝑎 = 𝑏)) |
46 | 45 | exlimivv 1847 |
. . . . . . . . . . . . 13
⊢
(∃𝑥∃𝑦 𝐺 = 〈𝑥, 𝑦〉 → (((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅}) ∧ 𝐺 ∈ V) → 𝑎 = 𝑏)) |
47 | 46 | com12 32 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅}) ∧ 𝐺 ∈ V) → (∃𝑥∃𝑦 𝐺 = 〈𝑥, 𝑦〉 → 𝑎 = 𝑏)) |
48 | 6, 47 | syl5bi 231 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅}) ∧ 𝐺 ∈ V) → (𝐺 ∈ (V × V) → 𝑎 = 𝑏)) |
49 | 48 | con3d 147 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅}) ∧ 𝐺 ∈ V) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V))) |
50 | 49 | 3exp 1256 |
. . . . . . . . 9
⊢ ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (Fun (𝐺 ∖ {∅}) → (𝐺 ∈ V → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V))))) |
51 | 50 | com24 93 |
. . . . . . . 8
⊢ ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (¬ 𝑎 = 𝑏 → (𝐺 ∈ V → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V ×
V))))) |
52 | 5, 51 | syl5bi 231 |
. . . . . . 7
⊢ ((𝑎 ∈ dom 𝐺 ∧ 𝑏 ∈ dom 𝐺) → (𝑎 ≠ 𝑏 → (𝐺 ∈ V → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V ×
V))))) |
53 | 52 | rexlimivv 3018 |
. . . . . 6
⊢
(∃𝑎 ∈ dom
𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏 → (𝐺 ∈ V → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V ×
V)))) |
54 | 53 | com12 32 |
. . . . 5
⊢ (𝐺 ∈ V → (∃𝑎 ∈ dom 𝐺∃𝑏 ∈ dom 𝐺 𝑎 ≠ 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V ×
V)))) |
55 | 4, 54 | syld 46 |
. . . 4
⊢ (𝐺 ∈ V → (2 ≤
(#‘dom 𝐺) → (Fun
(𝐺 ∖ {∅})
→ ¬ 𝐺 ∈ (V
× V)))) |
56 | 55 | com13 86 |
. . 3
⊢ (Fun
(𝐺 ∖ {∅})
→ (2 ≤ (#‘dom 𝐺) → (𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)))) |
57 | 56 | imp 444 |
. 2
⊢ ((Fun
(𝐺 ∖ {∅}) ∧
2 ≤ (#‘dom 𝐺))
→ (𝐺 ∈ V →
¬ 𝐺 ∈ (V ×
V))) |
58 | | prcnel 3191 |
. 2
⊢ (¬
𝐺 ∈ V → ¬
𝐺 ∈ (V ×
V)) |
59 | 57, 58 | pm2.61d1 170 |
1
⊢ ((Fun
(𝐺 ∖ {∅}) ∧
2 ≤ (#‘dom 𝐺))
→ ¬ 𝐺 ∈ (V
× V)) |