MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem11 Structured version   Visualization version   GIF version

Theorem vdwlem11 15533
Description: Lemma for vdw 15536. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem9.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem9.s (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
Assertion
Ref Expression
vdwlem11 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(𝐾 + 1) MonoAP 𝑓)
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝑠,𝐾,𝑛   𝑅,𝑓,𝑛,𝑠   𝜑,𝑓
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem vdwlem11
Dummy variables 𝑎 𝑑 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw.r . . 3 (𝜑𝑅 ∈ Fin)
2 vdwlem9.k . . 3 (𝜑𝐾 ∈ (ℤ‘2))
3 vdwlem9.s . . 3 (𝜑 → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠𝑚 (1...𝑛))𝐾 MonoAP 𝑓)
4 hashcl 13009 . . . . 5 (𝑅 ∈ Fin → (#‘𝑅) ∈ ℕ0)
51, 4syl 17 . . . 4 (𝜑 → (#‘𝑅) ∈ ℕ0)
6 nn0p1nn 11209 . . . 4 ((#‘𝑅) ∈ ℕ0 → ((#‘𝑅) + 1) ∈ ℕ)
75, 6syl 17 . . 3 (𝜑 → ((#‘𝑅) + 1) ∈ ℕ)
81, 2, 3, 7vdwlem10 15532 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓))
91adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑅 ∈ Fin)
10 ovex 6577 . . . . . . 7 (1...𝑛) ∈ V
11 elmapg 7757 . . . . . . 7 ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅𝑚 (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
129, 10, 11sylancl 693 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅𝑚 (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅))
1312biimpa 500 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅)
145nn0red 11229 . . . . . . . . . . 11 (𝜑 → (#‘𝑅) ∈ ℝ)
1514ltp1d 10833 . . . . . . . . . 10 (𝜑 → (#‘𝑅) < ((#‘𝑅) + 1))
16 peano2re 10088 . . . . . . . . . . . 12 ((#‘𝑅) ∈ ℝ → ((#‘𝑅) + 1) ∈ ℝ)
1714, 16syl 17 . . . . . . . . . . 11 (𝜑 → ((#‘𝑅) + 1) ∈ ℝ)
1814, 17ltnled 10063 . . . . . . . . . 10 (𝜑 → ((#‘𝑅) < ((#‘𝑅) + 1) ↔ ¬ ((#‘𝑅) + 1) ≤ (#‘𝑅)))
1915, 18mpbid 221 . . . . . . . . 9 (𝜑 → ¬ ((#‘𝑅) + 1) ≤ (#‘𝑅))
2019adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ((#‘𝑅) + 1) ≤ (#‘𝑅))
21 eluz2nn 11602 . . . . . . . . . . . . 13 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
222, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℕ)
2322adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ)
2423nnnn0d 11228 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝐾 ∈ ℕ0)
25 simprr 792 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → 𝑓:(1...𝑛)⟶𝑅)
267adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((#‘𝑅) + 1) ∈ ℕ)
27 eqid 2610 . . . . . . . . . 10 (1...((#‘𝑅) + 1)) = (1...((#‘𝑅) + 1))
2810, 24, 25, 26, 27vdwpc 15522 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1)))(∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((#‘𝑅) + 1))))
291ad3antrrr 762 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → 𝑅 ∈ Fin)
3025ad2antrr 758 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → 𝑓:(1...𝑛)⟶𝑅)
31 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}))
32 cnvimass 5404 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ⊆ dom 𝑓
3331, 32syl6ss 3580 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ dom 𝑓)
3425ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → 𝑓:(1...𝑛)⟶𝑅)
35 fdm 5964 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:(1...𝑛)⟶𝑅 → dom 𝑓 = (1...𝑛))
3634, 35syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → dom 𝑓 = (1...𝑛))
3733, 36sseqtrd 3604 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (1...𝑛))
3822ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → 𝐾 ∈ ℕ)
39 simplrl 796 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → 𝑎 ∈ ℕ)
40 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) → 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))
41 nnex 10903 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℕ ∈ V
42 ovex 6577 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1...((#‘𝑅) + 1)) ∈ V
4341, 42elmap 7772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))) ↔ 𝑑:(1...((#‘𝑅) + 1))⟶ℕ)
4440, 43sylib 207 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) → 𝑑:(1...((#‘𝑅) + 1))⟶ℕ)
4544ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → (𝑑𝑖) ∈ ℕ)
4639, 45nnaddcld 10944 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → (𝑎 + (𝑑𝑖)) ∈ ℕ)
47 vdwapid1 15517 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ ∧ (𝑎 + (𝑑𝑖)) ∈ ℕ ∧ (𝑑𝑖) ∈ ℕ) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4838, 46, 45, 47syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
4948adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑎 + (𝑑𝑖)) ∈ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
5037, 49sseldd 3569 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) ∧ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑎 + (𝑑𝑖)) ∈ (1...𝑛))
5150ex 449 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → (𝑎 + (𝑑𝑖)) ∈ (1...𝑛)))
52 ffvelrn 6265 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑛)⟶𝑅 ∧ (𝑎 + (𝑑𝑖)) ∈ (1...𝑛)) → (𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅)
5330, 51, 52syl6an 566 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ 𝑖 ∈ (1...((#‘𝑅) + 1))) → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → (𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅))
5453ralimdva 2945 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) → (∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) → ∀𝑖 ∈ (1...((#‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅))
5554imp 444 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ∀𝑖 ∈ (1...((#‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅)
56 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))
5756fmpt 6289 . . . . . . . . . . . . . . . 16 (∀𝑖 ∈ (1...((#‘𝑅) + 1))(𝑓‘(𝑎 + (𝑑𝑖))) ∈ 𝑅 ↔ (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((#‘𝑅) + 1))⟶𝑅)
5855, 57sylib 207 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((#‘𝑅) + 1))⟶𝑅)
59 frn 5966 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))):(1...((#‘𝑅) + 1))⟶𝑅 → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅)
6058, 59syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅)
61 ssdomg 7887 . . . . . . . . . . . . . 14 (𝑅 ∈ Fin → (ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅 → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6229, 60, 61sylc 63 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅)
63 ssfi 8065 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Fin ∧ ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ⊆ 𝑅) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin)
6429, 60, 63syl2anc 691 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin)
65 hashdom 13029 . . . . . . . . . . . . . 14 ((ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ∈ Fin ∧ 𝑅 ∈ Fin) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (#‘𝑅) ↔ ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6664, 29, 65syl2anc 691 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (#‘𝑅) ↔ ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) ≼ 𝑅))
6762, 66mpbird 246 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (#‘𝑅))
68 breq1 4586 . . . . . . . . . . . 12 ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((#‘𝑅) + 1) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) ≤ (#‘𝑅) ↔ ((#‘𝑅) + 1) ≤ (#‘𝑅)))
6967, 68syl5ibcom 234 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) ∧ ∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))})) → ((#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((#‘𝑅) + 1) → ((#‘𝑅) + 1) ≤ (#‘𝑅)))
7069expimpd 627 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1))))) → ((∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((#‘𝑅) + 1)) → ((#‘𝑅) + 1) ≤ (#‘𝑅)))
7170rexlimdvva 3020 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...((#‘𝑅) + 1)))(∀𝑖 ∈ (1...((#‘𝑅) + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...((#‘𝑅) + 1)) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = ((#‘𝑅) + 1)) → ((#‘𝑅) + 1) ≤ (#‘𝑅)))
7228, 71sylbid 229 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 → ((#‘𝑅) + 1) ≤ (#‘𝑅)))
7320, 72mtod 188 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ¬ ⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓)
74 biorf 419 . . . . . . 7 (¬ ⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7573, 74syl 17 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑓:(1...𝑛)⟶𝑅)) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7675anassrs 678 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓:(1...𝑛)⟶𝑅) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7713, 76syldan 486 . . . 4 (((𝜑𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅𝑚 (1...𝑛))) → ((𝐾 + 1) MonoAP 𝑓 ↔ (⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7877ralbidva 2968 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
7978rexbidva 3031 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(𝐾 + 1) MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(⟨((#‘𝑅) + 1), 𝐾⟩ PolyAP 𝑓 ∨ (𝐾 + 1) MonoAP 𝑓)))
808, 79mpbird 246 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅𝑚 (1...𝑛))(𝐾 + 1) MonoAP 𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540  {csn 4125  cop 4131   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cdom 7839  Fincfn 7841  cr 9814  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cn 10897  2c2 10947  0cn0 11169  cuz 11563  ...cfz 12197  #chash 12979  APcvdwa 15507   MonoAP cvdwm 15508   PolyAP cvdwp 15509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-hash 12980  df-vdwap 15510  df-vdwmc 15511  df-vdwpc 15512
This theorem is referenced by:  vdwlem13  15535
  Copyright terms: Public domain W3C validator