Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashsdom Structured version   Visualization version   GIF version

Theorem hashsdom 13031
 Description: Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
hashsdom ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐴) < (#‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem hashsdom
StepHypRef Expression
1 hashcl 13009 . . . 4 (𝐴 ∈ Fin → (#‘𝐴) ∈ ℕ0)
2 hashcl 13009 . . . 4 (𝐵 ∈ Fin → (#‘𝐵) ∈ ℕ0)
3 nn0re 11178 . . . . 5 ((#‘𝐴) ∈ ℕ0 → (#‘𝐴) ∈ ℝ)
4 nn0re 11178 . . . . 5 ((#‘𝐵) ∈ ℕ0 → (#‘𝐵) ∈ ℝ)
5 ltlen 10017 . . . . 5 (((#‘𝐴) ∈ ℝ ∧ (#‘𝐵) ∈ ℝ) → ((#‘𝐴) < (#‘𝐵) ↔ ((#‘𝐴) ≤ (#‘𝐵) ∧ (#‘𝐵) ≠ (#‘𝐴))))
63, 4, 5syl2an 493 . . . 4 (((#‘𝐴) ∈ ℕ0 ∧ (#‘𝐵) ∈ ℕ0) → ((#‘𝐴) < (#‘𝐵) ↔ ((#‘𝐴) ≤ (#‘𝐵) ∧ (#‘𝐵) ≠ (#‘𝐴))))
71, 2, 6syl2an 493 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐴) < (#‘𝐵) ↔ ((#‘𝐴) ≤ (#‘𝐵) ∧ (#‘𝐵) ≠ (#‘𝐴))))
8 hashdom 13029 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐴) ≤ (#‘𝐵) ↔ 𝐴𝐵))
9 eqcom 2617 . . . . . 6 ((#‘𝐵) = (#‘𝐴) ↔ (#‘𝐴) = (#‘𝐵))
10 hashen 12997 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐴) = (#‘𝐵) ↔ 𝐴𝐵))
119, 10syl5bb 271 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐵) = (#‘𝐴) ↔ 𝐴𝐵))
1211necon3abid 2818 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐵) ≠ (#‘𝐴) ↔ ¬ 𝐴𝐵))
138, 12anbi12d 743 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((#‘𝐴) ≤ (#‘𝐵) ∧ (#‘𝐵) ≠ (#‘𝐴)) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
147, 13bitrd 267 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐴) < (#‘𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
15 brsdom 7864 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
1614, 15syl6bbr 277 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((#‘𝐴) < (#‘𝐵) ↔ 𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   class class class wbr 4583  ‘cfv 5804   ≈ cen 7838   ≼ cdom 7839   ≺ csdm 7840  Fincfn 7841  ℝcr 9814   < clt 9953   ≤ cle 9954  ℕ0cn0 11169  #chash 12979 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980 This theorem is referenced by:  fzsdom2  13075  vdwlem12  15534  odcau  17842  pgpssslw  17852  pgpfaclem2  18304  ppiltx  24703  erdszelem10  30436  rp-isfinite6  36883
 Copyright terms: Public domain W3C validator