MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem12 Structured version   Visualization version   GIF version

Theorem vdwlem12 15534
Description: Lemma for vdw 15536. 𝐾 = 2 base case of induction. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdwlem12.f (𝜑𝐹:(1...((#‘𝑅) + 1))⟶𝑅)
vdwlem12.2 (𝜑 → ¬ 2 MonoAP 𝐹)
Assertion
Ref Expression
vdwlem12 ¬ 𝜑

Proof of Theorem vdwlem12
Dummy variables 𝑎 𝑐 𝑑 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdw.r . . . . . . 7 (𝜑𝑅 ∈ Fin)
2 hashcl 13009 . . . . . . 7 (𝑅 ∈ Fin → (#‘𝑅) ∈ ℕ0)
31, 2syl 17 . . . . . 6 (𝜑 → (#‘𝑅) ∈ ℕ0)
43nn0red 11229 . . . . 5 (𝜑 → (#‘𝑅) ∈ ℝ)
54ltp1d 10833 . . . 4 (𝜑 → (#‘𝑅) < ((#‘𝑅) + 1))
6 nn0p1nn 11209 . . . . . . 7 ((#‘𝑅) ∈ ℕ0 → ((#‘𝑅) + 1) ∈ ℕ)
73, 6syl 17 . . . . . 6 (𝜑 → ((#‘𝑅) + 1) ∈ ℕ)
87nnnn0d 11228 . . . . 5 (𝜑 → ((#‘𝑅) + 1) ∈ ℕ0)
9 hashfz1 12996 . . . . 5 (((#‘𝑅) + 1) ∈ ℕ0 → (#‘(1...((#‘𝑅) + 1))) = ((#‘𝑅) + 1))
108, 9syl 17 . . . 4 (𝜑 → (#‘(1...((#‘𝑅) + 1))) = ((#‘𝑅) + 1))
115, 10breqtrrd 4611 . . 3 (𝜑 → (#‘𝑅) < (#‘(1...((#‘𝑅) + 1))))
12 fzfi 12633 . . . 4 (1...((#‘𝑅) + 1)) ∈ Fin
13 hashsdom 13031 . . . 4 ((𝑅 ∈ Fin ∧ (1...((#‘𝑅) + 1)) ∈ Fin) → ((#‘𝑅) < (#‘(1...((#‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((#‘𝑅) + 1))))
141, 12, 13sylancl 693 . . 3 (𝜑 → ((#‘𝑅) < (#‘(1...((#‘𝑅) + 1))) ↔ 𝑅 ≺ (1...((#‘𝑅) + 1))))
1511, 14mpbid 221 . 2 (𝜑𝑅 ≺ (1...((#‘𝑅) + 1)))
16 vdwlem12.f . . . . 5 (𝜑𝐹:(1...((#‘𝑅) + 1))⟶𝑅)
17 fveq2 6103 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
18 fveq2 6103 . . . . . . . . 9 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
1917, 18eqeqan12d 2626 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑥) = (𝐹𝑦)))
20 eqeq12 2623 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → (𝑧 = 𝑤𝑥 = 𝑦))
2119, 20imbi12d 333 . . . . . . 7 ((𝑧 = 𝑥𝑤 = 𝑦) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
22 fveq2 6103 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
23 fveq2 6103 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
2422, 23eqeqan12d 2626 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑦) = (𝐹𝑥)))
25 eqcom 2617 . . . . . . . . 9 ((𝐹𝑦) = (𝐹𝑥) ↔ (𝐹𝑥) = (𝐹𝑦))
2624, 25syl6bb 275 . . . . . . . 8 ((𝑧 = 𝑦𝑤 = 𝑥) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐹𝑥) = (𝐹𝑦)))
27 eqeq12 2623 . . . . . . . . 9 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝑧 = 𝑤𝑦 = 𝑥))
28 eqcom 2617 . . . . . . . . 9 (𝑦 = 𝑥𝑥 = 𝑦)
2927, 28syl6bb 275 . . . . . . . 8 ((𝑧 = 𝑦𝑤 = 𝑥) → (𝑧 = 𝑤𝑥 = 𝑦))
3026, 29imbi12d 333 . . . . . . 7 ((𝑧 = 𝑦𝑤 = 𝑥) → (((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
31 elfznn 12241 . . . . . . . . . 10 (𝑥 ∈ (1...((#‘𝑅) + 1)) → 𝑥 ∈ ℕ)
3231nnred 10912 . . . . . . . . 9 (𝑥 ∈ (1...((#‘𝑅) + 1)) → 𝑥 ∈ ℝ)
3332ssriv 3572 . . . . . . . 8 (1...((#‘𝑅) + 1)) ⊆ ℝ
3433a1i 11 . . . . . . 7 (𝜑 → (1...((#‘𝑅) + 1)) ⊆ ℝ)
35 biidd 251 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
36 simplr3 1098 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥𝑦)
37 vdwlem12.2 . . . . . . . . . . 11 (𝜑 → ¬ 2 MonoAP 𝐹)
3837ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 2 MonoAP 𝐹)
39 3simpa 1051 . . . . . . . . . . . 12 ((𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦) → (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1))))
40 simplrl 796 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (1...((#‘𝑅) + 1)))
4140, 31syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℕ)
42 simprr 792 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
43 simplrr 797 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (1...((#‘𝑅) + 1)))
44 elfznn 12241 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...((#‘𝑅) + 1)) → 𝑦 ∈ ℕ)
4543, 44syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℕ)
46 nnsub 10936 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℕ))
4741, 45, 46syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 < 𝑦 ↔ (𝑦𝑥) ∈ ℕ))
4842, 47mpbid 221 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦𝑥) ∈ ℕ)
49 df-2 10956 . . . . . . . . . . . . . . . . . . 19 2 = (1 + 1)
5049fveq2i 6106 . . . . . . . . . . . . . . . . . 18 (AP‘2) = (AP‘(1 + 1))
5150oveqi 6562 . . . . . . . . . . . . . . . . 17 (𝑥(AP‘2)(𝑦𝑥)) = (𝑥(AP‘(1 + 1))(𝑦𝑥))
52 1nn0 11185 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
5352a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 1 ∈ ℕ0)
54 vdwapun 15516 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℕ0𝑥 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ) → (𝑥(AP‘(1 + 1))(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
5553, 41, 48, 54syl3anc 1318 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘(1 + 1))(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
5651, 55syl5eq 2656 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦𝑥)) = ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))))
57 simprl 790 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) = (𝐹𝑦))
5816ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝐹:(1...((#‘𝑅) + 1))⟶𝑅)
59 ffn 5958 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:(1...((#‘𝑅) + 1))⟶𝑅𝐹 Fn (1...((#‘𝑅) + 1)))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝐹 Fn (1...((#‘𝑅) + 1)))
61 fniniseg 6246 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn (1...((#‘𝑅) + 1)) → (𝑥 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ (𝐹𝑥) = (𝐹𝑦))))
6260, 61syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ (𝐹𝑥) = (𝐹𝑦))))
6340, 57, 62mpbir2and 959 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ (𝐹 “ {(𝐹𝑦)}))
6463snssd 4281 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → {𝑥} ⊆ (𝐹 “ {(𝐹𝑦)}))
6541nncnd 10913 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
6645nncnd 10913 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℂ)
6765, 66pncan3d 10274 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 + (𝑦𝑥)) = 𝑦)
6867oveq1d 6564 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) = (𝑦(AP‘1)(𝑦𝑥)))
69 vdwap1 15519 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ) → (𝑦(AP‘1)(𝑦𝑥)) = {𝑦})
7045, 48, 69syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦(AP‘1)(𝑦𝑥)) = {𝑦})
7168, 70eqtrd 2644 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) = {𝑦})
72 eqidd 2611 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝐹𝑦) = (𝐹𝑦))
73 fniniseg 6246 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn (1...((#‘𝑅) + 1)) → (𝑦 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ (𝐹𝑦) = (𝐹𝑦))))
7460, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ (𝐹𝑦) = (𝐹𝑦))))
7543, 72, 74mpbir2and 959 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ (𝐹 “ {(𝐹𝑦)}))
7675snssd 4281 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → {𝑦} ⊆ (𝐹 “ {(𝐹𝑦)}))
7771, 76eqsstrd 3602 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)}))
7864, 77unssd 3751 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ({𝑥} ∪ ((𝑥 + (𝑦𝑥))(AP‘1)(𝑦𝑥))) ⊆ (𝐹 “ {(𝐹𝑦)}))
7956, 78eqsstrd 3602 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)}))
80 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → (𝑎(AP‘2)𝑑) = (𝑥(AP‘2)𝑑))
8180sseq1d 3595 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → ((𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
82 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝑦𝑥) → (𝑥(AP‘2)𝑑) = (𝑥(AP‘2)(𝑦𝑥)))
8382sseq1d 3595 . . . . . . . . . . . . . . . 16 (𝑑 = (𝑦𝑥) → ((𝑥(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) ↔ (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)})))
8481, 83rspc2ev 3295 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ ∧ (𝑦𝑥) ∈ ℕ ∧ (𝑥(AP‘2)(𝑦𝑥)) ⊆ (𝐹 “ {(𝐹𝑦)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}))
8541, 48, 79, 84syl3anc 1318 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}))
86 fvex 6113 . . . . . . . . . . . . . . 15 (𝐹𝑦) ∈ V
87 sneq 4135 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝐹𝑦) → {𝑐} = {(𝐹𝑦)})
8887imaeq2d 5385 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑦) → (𝐹 “ {𝑐}) = (𝐹 “ {(𝐹𝑦)}))
8988sseq2d 3596 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑦) → ((𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
90892rexbidv 3039 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑦) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)})))
9186, 90spcev 3273 . . . . . . . . . . . . . 14 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {(𝐹𝑦)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}))
9285, 91syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐}))
93 ovex 6577 . . . . . . . . . . . . . 14 (1...((#‘𝑅) + 1)) ∈ V
94 2nn0 11186 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
9594a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℕ0)
9693, 95, 58vdwmc 15520 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → (2 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘2)𝑑) ⊆ (𝐹 “ {𝑐})))
9792, 96mpbird 246 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹)
9839, 97sylanl2 681 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 < 𝑦)) → 2 MonoAP 𝐹)
9998expr 641 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥 < 𝑦 → 2 MonoAP 𝐹))
10038, 99mtod 188 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → ¬ 𝑥 < 𝑦)
101 simplr1 1096 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ (1...((#‘𝑅) + 1)))
102101, 32syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 ∈ ℝ)
103 simplr2 1097 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ (1...((#‘𝑅) + 1)))
10433, 103sseldi 3566 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑦 ∈ ℝ)
105102, 104eqleltd 10060 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → (𝑥 = 𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑥 < 𝑦)))
10636, 100, 105mpbir2and 959 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) ∧ (𝐹𝑥) = (𝐹𝑦)) → 𝑥 = 𝑦)
107106ex 449 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
10821, 30, 34, 35, 107wlogle 10440 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...((#‘𝑅) + 1)) ∧ 𝑦 ∈ (1...((#‘𝑅) + 1)))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
109108ralrimivva 2954 . . . . 5 (𝜑 → ∀𝑥 ∈ (1...((#‘𝑅) + 1))∀𝑦 ∈ (1...((#‘𝑅) + 1))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
110 dff13 6416 . . . . 5 (𝐹:(1...((#‘𝑅) + 1))–1-1𝑅 ↔ (𝐹:(1...((#‘𝑅) + 1))⟶𝑅 ∧ ∀𝑥 ∈ (1...((#‘𝑅) + 1))∀𝑦 ∈ (1...((#‘𝑅) + 1))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
11116, 109, 110sylanbrc 695 . . . 4 (𝜑𝐹:(1...((#‘𝑅) + 1))–1-1𝑅)
112 f1domg 7861 . . . 4 (𝑅 ∈ Fin → (𝐹:(1...((#‘𝑅) + 1))–1-1𝑅 → (1...((#‘𝑅) + 1)) ≼ 𝑅))
1131, 111, 112sylc 63 . . 3 (𝜑 → (1...((#‘𝑅) + 1)) ≼ 𝑅)
114 domnsym 7971 . . 3 ((1...((#‘𝑅) + 1)) ≼ 𝑅 → ¬ 𝑅 ≺ (1...((#‘𝑅) + 1)))
115113, 114syl 17 . 2 (𝜑 → ¬ 𝑅 ≺ (1...((#‘𝑅) + 1)))
11615, 115pm2.65i 184 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  cun 3538  wss 3540  {csn 4125   class class class wbr 4583  ccnv 5037  cima 5041   Fn wfn 5799  wf 5800  1-1wf1 5801  cfv 5804  (class class class)co 6549  cdom 7839  csdm 7840  Fincfn 7841  cr 9814  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  ...cfz 12197  #chash 12979  APcvdwa 15507   MonoAP cvdwm 15508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-vdwap 15510  df-vdwmc 15511
This theorem is referenced by:  vdwlem13  15535
  Copyright terms: Public domain W3C validator