MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsub Structured version   Visualization version   GIF version

Theorem nnsub 10936
Description: Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnsub ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))

Proof of Theorem nnsub
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4587 . . . . . 6 (𝑥 = 1 → (𝑧 < 𝑥𝑧 < 1))
2 oveq1 6556 . . . . . . 7 (𝑥 = 1 → (𝑥𝑧) = (1 − 𝑧))
32eleq1d 2672 . . . . . 6 (𝑥 = 1 → ((𝑥𝑧) ∈ ℕ ↔ (1 − 𝑧) ∈ ℕ))
41, 3imbi12d 333 . . . . 5 (𝑥 = 1 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)))
54ralbidv 2969 . . . 4 (𝑥 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)))
6 breq2 4587 . . . . . 6 (𝑥 = 𝑦 → (𝑧 < 𝑥𝑧 < 𝑦))
7 oveq1 6556 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑧) = (𝑦𝑧))
87eleq1d 2672 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑧) ∈ ℕ ↔ (𝑦𝑧) ∈ ℕ))
96, 8imbi12d 333 . . . . 5 (𝑥 = 𝑦 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ)))
109ralbidv 2969 . . . 4 (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ)))
11 breq2 4587 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑧 < 𝑥𝑧 < (𝑦 + 1)))
12 oveq1 6556 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥𝑧) = ((𝑦 + 1) − 𝑧))
1312eleq1d 2672 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ))
1411, 13imbi12d 333 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
1514ralbidv 2969 . . . 4 (𝑥 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
16 breq2 4587 . . . . . 6 (𝑥 = 𝐵 → (𝑧 < 𝑥𝑧 < 𝐵))
17 oveq1 6556 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝑧) = (𝐵𝑧))
1817eleq1d 2672 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝑧) ∈ ℕ ↔ (𝐵𝑧) ∈ ℕ))
1916, 18imbi12d 333 . . . . 5 (𝑥 = 𝐵 → ((𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)))
2019ralbidv 2969 . . . 4 (𝑥 = 𝐵 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)))
21 nnnlt1 10927 . . . . . 6 (𝑧 ∈ ℕ → ¬ 𝑧 < 1)
2221pm2.21d 117 . . . . 5 (𝑧 ∈ ℕ → (𝑧 < 1 → (1 − 𝑧) ∈ ℕ))
2322rgen 2906 . . . 4 𝑧 ∈ ℕ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ)
24 breq1 4586 . . . . . . 7 (𝑧 = 𝑥 → (𝑧 < 𝑦𝑥 < 𝑦))
25 oveq2 6557 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦𝑧) = (𝑦𝑥))
2625eleq1d 2672 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦𝑧) ∈ ℕ ↔ (𝑦𝑥) ∈ ℕ))
2724, 26imbi12d 333 . . . . . 6 (𝑧 = 𝑥 → ((𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) ↔ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ)))
2827cbvralv 3147 . . . . 5 (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) ↔ ∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ))
29 nncn 10905 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
3029adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈ ℂ)
31 ax-1cn 9873 . . . . . . . . . . . 12 1 ∈ ℂ
32 pncan 10166 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) − 1) = 𝑦)
3330, 31, 32sylancl 693 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) = 𝑦)
34 simpl 472 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈ ℕ)
3533, 34eqeltrd 2688 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) ∈ ℕ)
36 oveq2 6557 . . . . . . . . . . 11 (𝑧 = 1 → ((𝑦 + 1) − 𝑧) = ((𝑦 + 1) − 1))
3736eleq1d 2672 . . . . . . . . . 10 (𝑧 = 1 → (((𝑦 + 1) − 𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈ ℕ))
3835, 37syl5ibrcom 236 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → ((𝑦 + 1) − 𝑧) ∈ ℕ))
3938a1dd 48 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
4039a1dd 48 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))))
41 breq1 4586 . . . . . . . . . 10 (𝑥 = (𝑧 − 1) → (𝑥 < 𝑦 ↔ (𝑧 − 1) < 𝑦))
42 oveq2 6557 . . . . . . . . . . 11 (𝑥 = (𝑧 − 1) → (𝑦𝑥) = (𝑦 − (𝑧 − 1)))
4342eleq1d 2672 . . . . . . . . . 10 (𝑥 = (𝑧 − 1) → ((𝑦𝑥) ∈ ℕ ↔ (𝑦 − (𝑧 − 1)) ∈ ℕ))
4441, 43imbi12d 333 . . . . . . . . 9 (𝑥 = (𝑧 − 1) → ((𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) ↔ ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ)))
4544rspcv 3278 . . . . . . . 8 ((𝑧 − 1) ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ)))
46 nnre 10904 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
47 nnre 10904 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
48 1re 9918 . . . . . . . . . . . 12 1 ∈ ℝ
49 ltsubadd 10377 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
5048, 49mp3an2 1404 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
5146, 47, 50syl2anr 494 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) < 𝑦𝑧 < (𝑦 + 1)))
52 nncn 10905 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
53 subsub3 10192 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5431, 53mp3an3 1405 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5529, 52, 54syl2an 493 . . . . . . . . . . 11 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧))
5655eleq1d 2672 . . . . . . . . . 10 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 − (𝑧 − 1)) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ))
5751, 56imbi12d 333 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
5857biimpd 218 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
5945, 58syl9r 76 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))))
60 nn1m1nn 10917 . . . . . . . 8 (𝑧 ∈ ℕ → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ))
6160adantl 481 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ))
6240, 59, 61mpjaod 395 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
6362ralrimdva 2952 . . . . 5 (𝑦 ∈ ℕ → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦𝑥) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
6428, 63syl5bi 231 . . . 4 (𝑦 ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦𝑧) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))
655, 10, 15, 20, 23, 64nnind 10915 . . 3 (𝐵 ∈ ℕ → ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ))
66 breq1 4586 . . . . 5 (𝑧 = 𝐴 → (𝑧 < 𝐵𝐴 < 𝐵))
67 oveq2 6557 . . . . . 6 (𝑧 = 𝐴 → (𝐵𝑧) = (𝐵𝐴))
6867eleq1d 2672 . . . . 5 (𝑧 = 𝐴 → ((𝐵𝑧) ∈ ℕ ↔ (𝐵𝐴) ∈ ℕ))
6966, 68imbi12d 333 . . . 4 (𝑧 = 𝐴 → ((𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ) ↔ (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ)))
7069rspcva 3280 . . 3 ((𝐴 ∈ ℕ ∧ ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵𝑧) ∈ ℕ)) → (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ))
7165, 70sylan2 490 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → (𝐵𝐴) ∈ ℕ))
72 nngt0 10926 . . 3 ((𝐵𝐴) ∈ ℕ → 0 < (𝐵𝐴))
73 nnre 10904 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
74 nnre 10904 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
75 posdif 10400 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
7673, 74, 75syl2an 493 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
7772, 76syl5ibr 235 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵𝐴) ∈ ℕ → 𝐴 < 𝐵))
7871, 77impbid 201 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cmin 10145  cn 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898
This theorem is referenced by:  nnsubi  10937  nn0sub  11220  uz3m2nn  11607  faclbnd4lem4  12945  pythagtriplem13  15370  vdwlem12  15534  perfectlem1  24754  bcprod  30877  nndivsub  31626  perfectALTVlem1  40164  crctcsh1wlkn0lem6  41018  crctcsh1wlkn0lem7  41019
  Copyright terms: Public domain W3C validator