MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwmc Structured version   Visualization version   GIF version

Theorem vdwmc 15520
Description: The predicate " The 𝑅, 𝑁-coloring 𝐹 contains a monochromatic AP of length 𝐾". (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwmc.1 𝑋 ∈ V
vdwmc.2 (𝜑𝐾 ∈ ℕ0)
vdwmc.3 (𝜑𝐹:𝑋𝑅)
Assertion
Ref Expression
vdwmc (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐹   𝐾,𝑎,𝑐,𝑑   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑎,𝑑)   𝑅(𝑎,𝑐,𝑑)   𝑋(𝑎,𝑐,𝑑)

Proof of Theorem vdwmc
Dummy variables 𝑓 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwmc.2 . . 3 (𝜑𝐾 ∈ ℕ0)
2 vdwmc.3 . . . 4 (𝜑𝐹:𝑋𝑅)
3 vdwmc.1 . . . 4 𝑋 ∈ V
4 fex 6394 . . . 4 ((𝐹:𝑋𝑅𝑋 ∈ V) → 𝐹 ∈ V)
52, 3, 4sylancl 693 . . 3 (𝜑𝐹 ∈ V)
6 fveq2 6103 . . . . . . . 8 (𝑘 = 𝐾 → (AP‘𝑘) = (AP‘𝐾))
76rneqd 5274 . . . . . . 7 (𝑘 = 𝐾 → ran (AP‘𝑘) = ran (AP‘𝐾))
8 cnveq 5218 . . . . . . . . 9 (𝑓 = 𝐹𝑓 = 𝐹)
98imaeq1d 5384 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓 “ {𝑐}) = (𝐹 “ {𝑐}))
109pweqd 4113 . . . . . . 7 (𝑓 = 𝐹 → 𝒫 (𝑓 “ {𝑐}) = 𝒫 (𝐹 “ {𝑐}))
117, 10ineqan12d 3778 . . . . . 6 ((𝑘 = 𝐾𝑓 = 𝐹) → (ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) = (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})))
1211neeq1d 2841 . . . . 5 ((𝑘 = 𝐾𝑓 = 𝐹) → ((ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅ ↔ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
1312exbidv 1837 . . . 4 ((𝑘 = 𝐾𝑓 = 𝐹) → (∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅ ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
14 df-vdwmc 15511 . . . 4 MonoAP = {⟨𝑘, 𝑓⟩ ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅}
1513, 14brabga 4914 . . 3 ((𝐾 ∈ ℕ0𝐹 ∈ V) → (𝐾 MonoAP 𝐹 ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
161, 5, 15syl2anc 691 . 2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅))
17 vdwapf 15514 . . . . 5 (𝐾 ∈ ℕ0 → (AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ)
18 ffn 5958 . . . . 5 ((AP‘𝐾):(ℕ × ℕ)⟶𝒫 ℕ → (AP‘𝐾) Fn (ℕ × ℕ))
19 selpw 4115 . . . . . . 7 (𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ 𝑧 ⊆ (𝐹 “ {𝑐}))
20 sseq1 3589 . . . . . . 7 (𝑧 = ((AP‘𝐾)‘𝑤) → (𝑧 ⊆ (𝐹 “ {𝑐}) ↔ ((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
2119, 20syl5bb 271 . . . . . 6 (𝑧 = ((AP‘𝐾)‘𝑤) → (𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
2221rexrn 6269 . . . . 5 ((AP‘𝐾) Fn (ℕ × ℕ) → (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
231, 17, 18, 224syl 19 . . . 4 (𝜑 → (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐})))
24 elin 3758 . . . . . 6 (𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ↔ (𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
2524exbii 1764 . . . . 5 (∃𝑧 𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ↔ ∃𝑧(𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
26 n0 3890 . . . . 5 ((ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})))
27 df-rex 2902 . . . . 5 (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ ∃𝑧(𝑧 ∈ ran (AP‘𝐾) ∧ 𝑧 ∈ 𝒫 (𝐹 “ {𝑐})))
2825, 26, 273bitr4ri 292 . . . 4 (∃𝑧 ∈ ran (AP‘𝐾)𝑧 ∈ 𝒫 (𝐹 “ {𝑐}) ↔ (ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅)
29 fveq2 6103 . . . . . . 7 (𝑤 = ⟨𝑎, 𝑑⟩ → ((AP‘𝐾)‘𝑤) = ((AP‘𝐾)‘⟨𝑎, 𝑑⟩))
30 df-ov 6552 . . . . . . 7 (𝑎(AP‘𝐾)𝑑) = ((AP‘𝐾)‘⟨𝑎, 𝑑⟩)
3129, 30syl6eqr 2662 . . . . . 6 (𝑤 = ⟨𝑎, 𝑑⟩ → ((AP‘𝐾)‘𝑤) = (𝑎(AP‘𝐾)𝑑))
3231sseq1d 3595 . . . . 5 (𝑤 = ⟨𝑎, 𝑑⟩ → (((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3332rexxp 5186 . . . 4 (∃𝑤 ∈ (ℕ × ℕ)((AP‘𝐾)‘𝑤) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
3423, 28, 333bitr3g 301 . . 3 (𝜑 → ((ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3534exbidv 1837 . 2 (𝜑 → (∃𝑐(ran (AP‘𝐾) ∩ 𝒫 (𝐹 “ {𝑐})) ≠ ∅ ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
3616, 35bitrd 267 1 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125  cop 4131   class class class wbr 4583   × cxp 5036  ccnv 5037  ran crn 5039  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cn 10897  0cn0 11169  APcvdwa 15507   MonoAP cvdwm 15508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-vdwap 15510  df-vdwmc 15511
This theorem is referenced by:  vdwmc2  15521  vdwlem1  15523  vdwlem2  15524  vdwlem9  15531  vdwlem10  15532  vdwlem12  15534  vdwlem13  15535
  Copyright terms: Public domain W3C validator