Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vdw | Structured version Visualization version GIF version |
Description: Van der Waerden's theorem. For any finite coloring 𝑅 and integer 𝐾, there is an 𝑁 such that every coloring function from 1...𝑁 to 𝑅 contains a monochromatic arithmetic progression (which written out in full means that there is a color 𝑐 and base, increment values 𝑎, 𝑑 such that all the numbers 𝑎, 𝑎 + 𝑑, ..., 𝑎 + (𝑘 − 1)𝑑 lie in the preimage of {𝑐}, i.e. they are all in 1...𝑁 and 𝑓 evaluated at each one yields 𝑐). (Contributed by Mario Carneiro, 13-Sep-2014.) |
Ref | Expression |
---|---|
vdw | ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 472 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → 𝑅 ∈ Fin) | |
2 | simpr 476 | . . 3 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℕ0) | |
3 | 1, 2 | vdwlem13 15535 | . 2 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓) |
4 | ovex 6577 | . . . . 5 ⊢ (1...𝑛) ∈ V | |
5 | simpllr 795 | . . . . 5 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))) → 𝐾 ∈ ℕ0) | |
6 | simpll 786 | . . . . . . 7 ⊢ (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → 𝑅 ∈ Fin) | |
7 | elmapg 7757 | . . . . . . 7 ⊢ ((𝑅 ∈ Fin ∧ (1...𝑛) ∈ V) → (𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) | |
8 | 6, 4, 7 | sylancl 693 | . . . . . 6 ⊢ (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛)) ↔ 𝑓:(1...𝑛)⟶𝑅)) |
9 | 8 | biimpa 500 | . . . . 5 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))) → 𝑓:(1...𝑛)⟶𝑅) |
10 | simplr 788 | . . . . . . 7 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))) → 𝑛 ∈ ℕ) | |
11 | nnuz 11599 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
12 | 10, 11 | syl6eleq 2698 | . . . . . 6 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))) → 𝑛 ∈ (ℤ≥‘1)) |
13 | eluzfz1 12219 | . . . . . 6 ⊢ (𝑛 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑛)) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))) → 1 ∈ (1...𝑛)) |
15 | 4, 5, 9, 14 | vdwmc2 15521 | . . . 4 ⊢ ((((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))) → (𝐾 MonoAP 𝑓 ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}))) |
16 | 15 | ralbidva 2968 | . . 3 ⊢ (((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}))) |
17 | 16 | rexbidva 3031 | . 2 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐}))) |
18 | 3, 17 | mpbid 221 | 1 ⊢ ((𝑅 ∈ Fin ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑𝑚 (1...𝑛))∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝑓 “ {𝑐})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 Vcvv 3173 {csn 4125 class class class wbr 4583 ◡ccnv 5037 “ cima 5041 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 Fincfn 7841 0cc0 9815 1c1 9816 + caddc 9818 · cmul 9820 − cmin 10145 ℕcn 10897 ℕ0cn0 11169 ℤ≥cuz 11563 ...cfz 12197 MonoAP cvdwm 15508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-xnn0 11241 df-z 11255 df-uz 11564 df-rp 11709 df-fz 12198 df-hash 12980 df-vdwap 15510 df-vdwmc 15511 df-vdwpc 15512 |
This theorem is referenced by: vdwnnlem1 15537 |
Copyright terms: Public domain | W3C validator |