Step | Hyp | Ref
| Expression |
1 | | peano2nn0 11210 |
. . . . 5
⊢ (𝐾 ∈ ℕ0
→ (𝐾 + 1) ∈
ℕ0) |
2 | | vdwapval 15515 |
. . . . 5
⊢ (((𝐾 + 1) ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)))) |
3 | 1, 2 | syl3an1 1351 |
. . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ ∃𝑛 ∈ (0...((𝐾 + 1) − 1))𝑥 = (𝐴 + (𝑛 · 𝐷)))) |
4 | | simp1 1054 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐾 ∈
ℕ0) |
5 | 4 | nn0cnd 11230 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐾 ∈
ℂ) |
6 | | ax-1cn 9873 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
7 | | pncan 10166 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐾 + 1)
− 1) = 𝐾) |
8 | 5, 6, 7 | sylancl 693 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝐾 + 1) − 1)
= 𝐾) |
9 | 8 | oveq2d 6565 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (0...((𝐾 + 1)
− 1)) = (0...𝐾)) |
10 | 9 | eleq2d 2673 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑛 ∈
(0...((𝐾 + 1) − 1))
↔ 𝑛 ∈ (0...𝐾))) |
11 | | nn0uz 11598 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
12 | 4, 11 | syl6eleq 2698 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐾 ∈
(ℤ≥‘0)) |
13 | | elfzp12 12288 |
. . . . . . . . . 10
⊢ (𝐾 ∈
(ℤ≥‘0) → (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)))) |
14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑛 ∈ (0...𝐾) ↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)))) |
15 | 10, 14 | bitrd 267 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑛 ∈
(0...((𝐾 + 1) − 1))
↔ (𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)))) |
16 | 15 | anbi1d 737 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝑛 ∈
(0...((𝐾 + 1) − 1))
∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
17 | | andir 908 |
. . . . . . 7
⊢ (((𝑛 = 0 ∨ 𝑛 ∈ ((0 + 1)...𝐾)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
18 | 16, 17 | syl6bb 275 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝑛 ∈
(0...((𝐾 + 1) − 1))
∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) |
19 | 18 | exbidv 1837 |
. . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) |
20 | | df-rex 2902 |
. . . . 5
⊢
(∃𝑛 ∈
(0...((𝐾 + 1) −
1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ∃𝑛(𝑛 ∈ (0...((𝐾 + 1) − 1)) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) |
21 | | 19.43 1799 |
. . . . . 6
⊢
(∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
22 | 21 | bicomi 213 |
. . . . 5
⊢
((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ ∃𝑛((𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ (𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
23 | 19, 20, 22 | 3bitr4g 302 |
. . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛 ∈
(0...((𝐾 + 1) −
1))𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) |
24 | 3, 23 | bitrd 267 |
. . 3
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))))) |
25 | | nncn 10905 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℂ) |
26 | 25 | 3ad2ant3 1077 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐷 ∈
ℂ) |
27 | 26 | mul02d 10113 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (0 · 𝐷) =
0) |
28 | 27 | oveq2d 6565 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + (0 ·
𝐷)) = (𝐴 + 0)) |
29 | | nncn 10905 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
30 | 29 | 3ad2ant2 1076 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ 𝐴 ∈
ℂ) |
31 | 30 | addid1d 10115 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + 0) = 𝐴) |
32 | 28, 31 | eqtrd 2644 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + (0 ·
𝐷)) = 𝐴) |
33 | 32 | eqeq2d 2620 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 = (𝐴 + (0 · 𝐷)) ↔ 𝑥 = 𝐴)) |
34 | | c0ex 9913 |
. . . . . . 7
⊢ 0 ∈
V |
35 | | oveq1 6556 |
. . . . . . . . 9
⊢ (𝑛 = 0 → (𝑛 · 𝐷) = (0 · 𝐷)) |
36 | 35 | oveq2d 6565 |
. . . . . . . 8
⊢ (𝑛 = 0 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (0 · 𝐷))) |
37 | 36 | eqeq2d 2620 |
. . . . . . 7
⊢ (𝑛 = 0 → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ 𝑥 = (𝐴 + (0 · 𝐷)))) |
38 | 34, 37 | ceqsexv 3215 |
. . . . . 6
⊢
(∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 = (𝐴 + (0 · 𝐷))) |
39 | | velsn 4141 |
. . . . . 6
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
40 | 33, 38, 39 | 3bitr4g 302 |
. . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ {𝐴})) |
41 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈ ((0 + 1)...𝐾)) |
42 | | 0p1e1 11009 |
. . . . . . . . . . . . . . 15
⊢ (0 + 1) =
1 |
43 | 42 | oveq1i 6559 |
. . . . . . . . . . . . . 14
⊢ ((0 +
1)...𝐾) = (1...𝐾) |
44 | 41, 43 | syl6eleq 2698 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈ (1...𝐾)) |
45 | | 1zzd 11285 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 1 ∈
ℤ) |
46 | 4 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐾 ∈
ℕ0) |
47 | 46 | nn0zd 11356 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐾 ∈
ℤ) |
48 | | elfzelz 12213 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ((0 + 1)...𝐾) → 𝑛 ∈ ℤ) |
49 | 48 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈
ℤ) |
50 | | fzsubel 12248 |
. . . . . . . . . . . . . 14
⊢ (((1
∈ ℤ ∧ 𝐾
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1)))) |
51 | 45, 47, 49, 45, 50 | syl22anc 1319 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 ∈ (1...𝐾) ↔ (𝑛 − 1) ∈ ((1 − 1)...(𝐾 − 1)))) |
52 | 44, 51 | mpbid 221 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 − 1) ∈ ((1 −
1)...(𝐾 −
1))) |
53 | | 1m1e0 10966 |
. . . . . . . . . . . . 13
⊢ (1
− 1) = 0 |
54 | 53 | oveq1i 6559 |
. . . . . . . . . . . 12
⊢ ((1
− 1)...(𝐾 − 1))
= (0...(𝐾 −
1)) |
55 | 52, 54 | syl6eleq 2698 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 − 1) ∈ (0...(𝐾 − 1))) |
56 | 49 | zcnd 11359 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝑛 ∈
ℂ) |
57 | | 1cnd 9935 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 1 ∈
ℂ) |
58 | 26 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐷 ∈
ℂ) |
59 | 56, 57, 58 | subdird 10366 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − (1 · 𝐷))) |
60 | 58 | mulid2d 9937 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (1 ·
𝐷) = 𝐷) |
61 | 60 | oveq2d 6565 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 · 𝐷) − (1 · 𝐷)) = ((𝑛 · 𝐷) − 𝐷)) |
62 | 59, 61 | eqtrd 2644 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 − 1) · 𝐷) = ((𝑛 · 𝐷) − 𝐷)) |
63 | 62 | oveq2d 6565 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐷 + ((𝑛 − 1) · 𝐷)) = (𝐷 + ((𝑛 · 𝐷) − 𝐷))) |
64 | 56, 58 | mulcld 9939 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 · 𝐷) ∈ ℂ) |
65 | 58, 64 | pncan3d 10274 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐷 + ((𝑛 · 𝐷) − 𝐷)) = (𝑛 · 𝐷)) |
66 | 63, 65 | eqtr2d 2645 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 · 𝐷) = (𝐷 + ((𝑛 − 1) · 𝐷))) |
67 | 66 | oveq2d 6565 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷)))) |
68 | 30 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → 𝐴 ∈
ℂ) |
69 | | subcl 10159 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑛 −
1) ∈ ℂ) |
70 | 56, 6, 69 | sylancl 693 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑛 − 1) ∈
ℂ) |
71 | 70, 58 | mulcld 9939 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝑛 − 1) · 𝐷) ∈
ℂ) |
72 | 68, 58, 71 | addassd 9941 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)) = (𝐴 + (𝐷 + ((𝑛 − 1) · 𝐷)))) |
73 | 67, 72 | eqtr4d 2647 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) |
74 | | oveq1 6556 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑛 − 1) → (𝑚 · 𝐷) = ((𝑛 − 1) · 𝐷)) |
75 | 74 | oveq2d 6565 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 − 1) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) |
76 | 75 | eqeq2d 2620 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑛 − 1) → ((𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷)))) |
77 | 76 | rspcev 3282 |
. . . . . . . . . . 11
⊢ (((𝑛 − 1) ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + ((𝑛 − 1) · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))) |
78 | 55, 73, 77 | syl2anc 691 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) →
∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷))) |
79 | | eqeq1 2614 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ (𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
80 | 79 | rexbidv 3034 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐴 + (𝑛 · 𝐷)) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))(𝐴 + (𝑛 · 𝐷)) = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
81 | 78, 80 | syl5ibrcom 236 |
. . . . . . . . 9
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑛 ∈ ((0 +
1)...𝐾)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
82 | 81 | expimpd 627 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((𝑛 ∈ ((0 +
1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
83 | 82 | exlimdv 1848 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) → ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
84 | | simpr 476 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ (0...(𝐾 − 1))) |
85 | | 0zd 11266 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 0 ∈
ℤ) |
86 | 4 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℕ0) |
87 | 86 | nn0zd 11356 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℤ) |
88 | | peano2zm 11297 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ ℤ → (𝐾 − 1) ∈
ℤ) |
89 | 87, 88 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐾 − 1) ∈
ℤ) |
90 | | elfzelz 12213 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℤ) |
91 | 90 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈
ℤ) |
92 | | 1zzd 11285 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈
ℤ) |
93 | | fzaddel 12246 |
. . . . . . . . . . . . 13
⊢ (((0
∈ ℤ ∧ (𝐾
− 1) ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑚 ∈
(0...(𝐾 − 1)) ↔
(𝑚 + 1) ∈ ((0 +
1)...((𝐾 − 1) +
1)))) |
94 | 85, 89, 91, 92, 93 | syl22anc 1319 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 ∈ (0...(𝐾 − 1)) ↔ (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) + 1)))) |
95 | 84, 94 | mpbid 221 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...((𝐾 − 1) +
1))) |
96 | 86 | nn0cnd 11230 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℂ) |
97 | | npcan 10169 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐾 −
1) + 1) = 𝐾) |
98 | 96, 6, 97 | sylancl 693 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐾 − 1) + 1) = 𝐾) |
99 | 98 | oveq2d 6565 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((0 +
1)...((𝐾 − 1) + 1)) =
((0 + 1)...𝐾)) |
100 | 95, 99 | eleqtrd 2690 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 + 1) ∈ ((0 + 1)...𝐾)) |
101 | 30 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈
ℂ) |
102 | 26 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐷 ∈
ℂ) |
103 | 91 | zcnd 11359 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈
ℂ) |
104 | 103, 102 | mulcld 9939 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ) |
105 | 101, 102,
104 | addassd 9941 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷)))) |
106 | | 1cnd 9935 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈
ℂ) |
107 | 103, 106,
102 | adddird 9944 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = ((𝑚 · 𝐷) + (1 · 𝐷))) |
108 | 102, 104 | addcomd 10117 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷)) |
109 | 102 | mulid2d 9937 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (1 ·
𝐷) = 𝐷) |
110 | 109 | oveq2d 6565 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 · 𝐷) + (1 · 𝐷)) = ((𝑚 · 𝐷) + 𝐷)) |
111 | 108, 110 | eqtr4d 2647 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐷 + (𝑚 · 𝐷)) = ((𝑚 · 𝐷) + (1 · 𝐷))) |
112 | 107, 111 | eqtr4d 2647 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑚 + 1) · 𝐷) = (𝐷 + (𝑚 · 𝐷))) |
113 | 112 | oveq2d 6565 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + ((𝑚 + 1) · 𝐷)) = (𝐴 + (𝐷 + (𝑚 · 𝐷)))) |
114 | 105, 113 | eqtr4d 2647 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) |
115 | | ovex 6577 |
. . . . . . . . . . 11
⊢ (𝑚 + 1) ∈ V |
116 | | eleq1 2676 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 + 1) → (𝑛 ∈ ((0 + 1)...𝐾) ↔ (𝑚 + 1) ∈ ((0 + 1)...𝐾))) |
117 | | oveq1 6556 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑚 + 1) → (𝑛 · 𝐷) = ((𝑚 + 1) · 𝐷)) |
118 | 117 | oveq2d 6565 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 + 1) → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) |
119 | 118 | eqeq2d 2620 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑚 + 1) → (((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷)))) |
120 | 116, 119 | anbi12d 743 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑚 + 1) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) ↔ ((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))))) |
121 | 115, 120 | spcev 3273 |
. . . . . . . . . 10
⊢ (((𝑚 + 1) ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + ((𝑚 + 1) · 𝐷))) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))) |
122 | 100, 114,
121 | syl2anc 691 |
. . . . . . . . 9
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) →
∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))) |
123 | | eqeq1 2614 |
. . . . . . . . . . 11
⊢ (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (𝑥 = (𝐴 + (𝑛 · 𝐷)) ↔ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))) |
124 | 123 | anbi2d 736 |
. . . . . . . . . 10
⊢ (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ((𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ (𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))) |
125 | 124 | exbidv 1837 |
. . . . . . . . 9
⊢ (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ ((𝐴 + 𝐷) + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))) |
126 | 122, 125 | syl5ibrcom 236 |
. . . . . . . 8
⊢ (((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
127 | 126 | rexlimdva 3013 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑚 ∈
(0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)) → ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))))) |
128 | 83, 127 | impbid 201 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
129 | | nnaddcl 10919 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ℕ) |
130 | 129 | 3adant1 1072 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴 + 𝐷) ∈
ℕ) |
131 | | vdwapval 15515 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
132 | 130, 131 | syld3an2 1365 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝐴 + 𝐷) + (𝑚 · 𝐷)))) |
133 | 128, 132 | bitr4d 270 |
. . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ↔ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))) |
134 | 40, 133 | orbi12d 742 |
. . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))) |
135 | | elun 3715 |
. . . 4
⊢ (𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)) ↔ (𝑥 ∈ {𝐴} ∨ 𝑥 ∈ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))) |
136 | 134, 135 | syl6bbr 277 |
. . 3
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ ((∃𝑛(𝑛 = 0 ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷))) ∨ ∃𝑛(𝑛 ∈ ((0 + 1)...𝐾) ∧ 𝑥 = (𝐴 + (𝑛 · 𝐷)))) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))) |
137 | 24, 136 | bitrd 267 |
. 2
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑥 ∈ (𝐴(AP‘(𝐾 + 1))𝐷) ↔ 𝑥 ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷)))) |
138 | 137 | eqrdv 2608 |
1
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴(AP‘(𝐾 + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘𝐾)𝐷))) |