MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem5 Structured version   Visualization version   GIF version

Theorem vdwlem5 15527
Description: Lemma for vdw 15536. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
vdwlem6.b (𝜑𝐵 ∈ ℕ)
vdwlem6.e (𝜑𝐸:(1...𝑀)⟶ℕ)
vdwlem6.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
vdwlem6.j 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
vdwlem6.r (𝜑 → (#‘ran 𝐽) = 𝑀)
vdwlem6.t 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
vdwlem6.p 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
Assertion
Ref Expression
vdwlem5 (𝜑𝑇 ∈ ℕ)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑖,𝑗,𝑥,𝑦,𝐺   𝑖,𝐾,𝑗,𝑥,𝑦   𝑖,𝐽,𝑗,𝑥   𝑃,𝑖,𝑥   𝜑,𝑖,𝑗,𝑥,𝑦   𝑅,𝑖,𝑥,𝑦   𝐵,𝑖,𝑗,𝑥,𝑦   𝑖,𝐻,𝑥,𝑦   𝑖,𝑀,𝑗,𝑥,𝑦   𝐷,𝑗,𝑥,𝑦   𝑖,𝐸,𝑗,𝑥,𝑦   𝑖,𝑊,𝑗,𝑥,𝑦   𝑇,𝑖,𝑥   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖)   𝑃(𝑦,𝑗)   𝑅(𝑗)   𝑇(𝑦,𝑗)   𝐹(𝑥,𝑦,𝑖,𝑗)   𝐻(𝑗)   𝐽(𝑦)   𝑉(𝑖,𝑗)

Proof of Theorem vdwlem5
StepHypRef Expression
1 vdwlem6.t . 2 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
2 vdwlem6.b . . 3 (𝜑𝐵 ∈ ℕ)
3 vdwlem3.w . . . . 5 (𝜑𝑊 ∈ ℕ)
43nnnn0d 11228 . . . 4 (𝜑𝑊 ∈ ℕ0)
5 vdwlem7.a . . . . . 6 (𝜑𝐴 ∈ ℕ)
6 vdwlem3.v . . . . . . . . . 10 (𝜑𝑉 ∈ ℕ)
76nncnd 10913 . . . . . . . . 9 (𝜑𝑉 ∈ ℂ)
8 vdwlem7.d . . . . . . . . . 10 (𝜑𝐷 ∈ ℕ)
98nncnd 10913 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
107, 9subcld 10271 . . . . . . . 8 (𝜑 → (𝑉𝐷) ∈ ℂ)
115nncnd 10913 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1210, 11npcand 10275 . . . . . . 7 (𝜑 → (((𝑉𝐷) − 𝐴) + 𝐴) = (𝑉𝐷))
137, 9, 11subsub4d 10302 . . . . . . . . . 10 (𝜑 → ((𝑉𝐷) − 𝐴) = (𝑉 − (𝐷 + 𝐴)))
149, 11addcomd 10117 . . . . . . . . . . 11 (𝜑 → (𝐷 + 𝐴) = (𝐴 + 𝐷))
1514oveq2d 6565 . . . . . . . . . 10 (𝜑 → (𝑉 − (𝐷 + 𝐴)) = (𝑉 − (𝐴 + 𝐷)))
1613, 15eqtrd 2644 . . . . . . . . 9 (𝜑 → ((𝑉𝐷) − 𝐴) = (𝑉 − (𝐴 + 𝐷)))
17 cnvimass 5404 . . . . . . . . . . . . 13 (𝐹 “ {𝐺}) ⊆ dom 𝐹
18 vdwlem4.r . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ Fin)
19 vdwlem4.h . . . . . . . . . . . . . . 15 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
20 vdwlem4.f . . . . . . . . . . . . . . 15 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
216, 3, 18, 19, 20vdwlem4 15526 . . . . . . . . . . . . . 14 (𝜑𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)))
22 fdm 5964 . . . . . . . . . . . . . 14 (𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)) → dom 𝐹 = (1...𝑉))
2321, 22syl 17 . . . . . . . . . . . . 13 (𝜑 → dom 𝐹 = (1...𝑉))
2417, 23syl5sseq 3616 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ {𝐺}) ⊆ (1...𝑉))
25 vdwlem7.s . . . . . . . . . . . . 13 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
26 ssun2 3739 . . . . . . . . . . . . . . 15 ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷) ⊆ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
27 vdwlem7.k . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ (ℤ‘2))
28 uz2m1nn 11639 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (ℤ‘2) → (𝐾 − 1) ∈ ℕ)
2927, 28syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 − 1) ∈ ℕ)
305, 8nnaddcld 10944 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 + 𝐷) ∈ ℕ)
31 vdwapid1 15517 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ ℕ ∧ (𝐴 + 𝐷) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
3229, 30, 8, 31syl3anc 1318 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 + 𝐷) ∈ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷))
3326, 32sseldi 3566 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝐷) ∈ ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
34 eluz2nn 11602 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
3527, 34syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ ℕ)
3635nncnd 10913 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℂ)
37 ax-1cn 9873 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
38 npcan 10169 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
3936, 37, 38sylancl 693 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
4039fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝜑 → (AP‘((𝐾 − 1) + 1)) = (AP‘𝐾))
4140oveqd 6566 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = (𝐴(AP‘𝐾)𝐷))
42 nnm1nn0 11211 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
4335, 42syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 − 1) ∈ ℕ0)
44 vdwapun 15516 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4543, 5, 8, 44syl3anc 1318 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(AP‘((𝐾 − 1) + 1))𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4641, 45eqtr3d 2646 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(AP‘𝐾)𝐷) = ({𝐴} ∪ ((𝐴 + 𝐷)(AP‘(𝐾 − 1))𝐷)))
4733, 46eleqtrrd 2691 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 𝐷) ∈ (𝐴(AP‘𝐾)𝐷))
4825, 47sseldd 3569 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐷) ∈ (𝐹 “ {𝐺}))
4924, 48sseldd 3569 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐷) ∈ (1...𝑉))
50 elfzuz3 12210 . . . . . . . . . . 11 ((𝐴 + 𝐷) ∈ (1...𝑉) → 𝑉 ∈ (ℤ‘(𝐴 + 𝐷)))
5149, 50syl 17 . . . . . . . . . 10 (𝜑𝑉 ∈ (ℤ‘(𝐴 + 𝐷)))
52 uznn0sub 11595 . . . . . . . . . 10 (𝑉 ∈ (ℤ‘(𝐴 + 𝐷)) → (𝑉 − (𝐴 + 𝐷)) ∈ ℕ0)
5351, 52syl 17 . . . . . . . . 9 (𝜑 → (𝑉 − (𝐴 + 𝐷)) ∈ ℕ0)
5416, 53eqeltrd 2688 . . . . . . . 8 (𝜑 → ((𝑉𝐷) − 𝐴) ∈ ℕ0)
55 nn0nnaddcl 11201 . . . . . . . 8 ((((𝑉𝐷) − 𝐴) ∈ ℕ0𝐴 ∈ ℕ) → (((𝑉𝐷) − 𝐴) + 𝐴) ∈ ℕ)
5654, 5, 55syl2anc 691 . . . . . . 7 (𝜑 → (((𝑉𝐷) − 𝐴) + 𝐴) ∈ ℕ)
5712, 56eqeltrrd 2689 . . . . . 6 (𝜑 → (𝑉𝐷) ∈ ℕ)
585, 57nnaddcld 10944 . . . . 5 (𝜑 → (𝐴 + (𝑉𝐷)) ∈ ℕ)
59 nnm1nn0 11211 . . . . 5 ((𝐴 + (𝑉𝐷)) ∈ ℕ → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℕ0)
6058, 59syl 17 . . . 4 (𝜑 → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℕ0)
614, 60nn0mulcld 11233 . . 3 (𝜑 → (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℕ0)
62 nnnn0addcl 11200 . . 3 ((𝐵 ∈ ℕ ∧ (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℕ0) → (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) ∈ ℕ)
632, 61, 62syl2anc 691 . 2 (𝜑 → (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) ∈ ℕ)
641, 63syl5eqel 2692 1 (𝜑𝑇 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  cun 3538  wss 3540  ifcif 4036  {csn 4125  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cuz 11563  ...cfz 12197  #chash 12979  APcvdwa 15507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-vdwap 15510
This theorem is referenced by:  vdwlem6  15528
  Copyright terms: Public domain W3C validator