MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapun Structured version   Unicode version

Theorem vdwapun 14152
Description: Remove the first element of an arithmetic progression. (Contributed by Mario Carneiro, 11-Sep-2014.)
Assertion
Ref Expression
vdwapun  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( A (AP `  ( K  +  1 ) ) D )  =  ( { A }  u.  ( ( A  +  D ) (AP `  K ) D ) ) )

Proof of Theorem vdwapun
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn0 10730 . . . . 5  |-  ( K  e.  NN0  ->  ( K  +  1 )  e. 
NN0 )
2 vdwapval 14151 . . . . 5  |-  ( ( ( K  +  1 )  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
x  e.  ( A (AP `  ( K  +  1 ) ) D )  <->  E. n  e.  ( 0 ... (
( K  +  1 )  -  1 ) ) x  =  ( A  +  ( n  x.  D ) ) ) )
31, 2syl3an1 1252 . . . 4  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
x  e.  ( A (AP `  ( K  +  1 ) ) D )  <->  E. n  e.  ( 0 ... (
( K  +  1 )  -  1 ) ) x  =  ( A  +  ( n  x.  D ) ) ) )
4 simp1 988 . . . . . . . . . . . . 13  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  K  e.  NN0 )
54nn0cnd 10748 . . . . . . . . . . . 12  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  K  e.  CC )
6 ax-1cn 9450 . . . . . . . . . . . 12  |-  1  e.  CC
7 pncan 9726 . . . . . . . . . . . 12  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  + 
1 )  -  1 )  =  K )
85, 6, 7sylancl 662 . . . . . . . . . . 11  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
( K  +  1 )  -  1 )  =  K )
98oveq2d 6215 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
0 ... ( ( K  +  1 )  - 
1 ) )  =  ( 0 ... K
) )
109eleq2d 2524 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
n  e.  ( 0 ... ( ( K  +  1 )  - 
1 ) )  <->  n  e.  ( 0 ... K
) ) )
11 nn0uz 11005 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
124, 11syl6eleq 2552 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  K  e.  ( ZZ>= `  0 )
)
13 elfzp12 11655 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  0
)  ->  ( n  e.  ( 0 ... K
)  <->  ( n  =  0  \/  n  e.  ( ( 0  +  1 ) ... K
) ) ) )
1412, 13syl 16 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
n  e.  ( 0 ... K )  <->  ( n  =  0  \/  n  e.  ( ( 0  +  1 ) ... K
) ) ) )
1510, 14bitrd 253 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
n  e.  ( 0 ... ( ( K  +  1 )  - 
1 ) )  <->  ( n  =  0  \/  n  e.  ( ( 0  +  1 ) ... K
) ) ) )
1615anbi1d 704 . . . . . . 7  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
( n  e.  ( 0 ... ( ( K  +  1 )  -  1 ) )  /\  x  =  ( A  +  ( n  x.  D ) ) )  <->  ( ( n  =  0  \/  n  e.  ( ( 0  +  1 ) ... K
) )  /\  x  =  ( A  +  ( n  x.  D
) ) ) ) )
17 andir 863 . . . . . . 7  |-  ( ( ( n  =  0  \/  n  e.  ( ( 0  +  1 ) ... K ) )  /\  x  =  ( A  +  ( n  x.  D ) ) )  <->  ( (
n  =  0  /\  x  =  ( A  +  ( n  x.  D ) ) )  \/  ( n  e.  ( ( 0  +  1 ) ... K
)  /\  x  =  ( A  +  (
n  x.  D ) ) ) ) )
1816, 17syl6bb 261 . . . . . 6  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
( n  e.  ( 0 ... ( ( K  +  1 )  -  1 ) )  /\  x  =  ( A  +  ( n  x.  D ) ) )  <->  ( ( n  =  0  /\  x  =  ( A  +  ( n  x.  D
) ) )  \/  ( n  e.  ( ( 0  +  1 ) ... K )  /\  x  =  ( A  +  ( n  x.  D ) ) ) ) ) )
1918exbidv 1681 . . . . 5  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( E. n ( n  e.  ( 0 ... (
( K  +  1 )  -  1 ) )  /\  x  =  ( A  +  ( n  x.  D ) ) )  <->  E. n
( ( n  =  0  /\  x  =  ( A  +  ( n  x.  D ) ) )  \/  (
n  e.  ( ( 0  +  1 ) ... K )  /\  x  =  ( A  +  ( n  x.  D ) ) ) ) ) )
20 df-rex 2804 . . . . 5  |-  ( E. n  e.  ( 0 ... ( ( K  +  1 )  - 
1 ) ) x  =  ( A  +  ( n  x.  D
) )  <->  E. n
( n  e.  ( 0 ... ( ( K  +  1 )  -  1 ) )  /\  x  =  ( A  +  ( n  x.  D ) ) ) )
21 19.43 1661 . . . . . 6  |-  ( E. n ( ( n  =  0  /\  x  =  ( A  +  ( n  x.  D
) ) )  \/  ( n  e.  ( ( 0  +  1 ) ... K )  /\  x  =  ( A  +  ( n  x.  D ) ) ) )  <->  ( E. n ( n  =  0  /\  x  =  ( A  +  ( n  x.  D ) ) )  \/  E. n ( n  e.  ( ( 0  +  1 ) ... K
)  /\  x  =  ( A  +  (
n  x.  D ) ) ) ) )
2221bicomi 202 . . . . 5  |-  ( ( E. n ( n  =  0  /\  x  =  ( A  +  ( n  x.  D
) ) )  \/ 
E. n ( n  e.  ( ( 0  +  1 ) ... K )  /\  x  =  ( A  +  ( n  x.  D
) ) ) )  <->  E. n ( ( n  =  0  /\  x  =  ( A  +  ( n  x.  D
) ) )  \/  ( n  e.  ( ( 0  +  1 ) ... K )  /\  x  =  ( A  +  ( n  x.  D ) ) ) ) )
2319, 20, 223bitr4g 288 . . . 4  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( E. n  e.  (
0 ... ( ( K  +  1 )  - 
1 ) ) x  =  ( A  +  ( n  x.  D
) )  <->  ( E. n ( n  =  0  /\  x  =  ( A  +  ( n  x.  D ) ) )  \/  E. n ( n  e.  ( ( 0  +  1 ) ... K
)  /\  x  =  ( A  +  (
n  x.  D ) ) ) ) ) )
243, 23bitrd 253 . . 3  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
x  e.  ( A (AP `  ( K  +  1 ) ) D )  <->  ( E. n ( n  =  0  /\  x  =  ( A  +  ( n  x.  D ) ) )  \/  E. n ( n  e.  ( ( 0  +  1 ) ... K
)  /\  x  =  ( A  +  (
n  x.  D ) ) ) ) ) )
25 nncn 10440 . . . . . . . . . . 11  |-  ( D  e.  NN  ->  D  e.  CC )
26253ad2ant3 1011 . . . . . . . . . 10  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  D  e.  CC )
2726mul02d 9677 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
0  x.  D )  =  0 )
2827oveq2d 6215 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( A  +  ( 0  x.  D ) )  =  ( A  + 
0 ) )
29 nncn 10440 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  CC )
30293ad2ant2 1010 . . . . . . . . 9  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  A  e.  CC )
3130addid1d 9679 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( A  +  0 )  =  A )
3228, 31eqtrd 2495 . . . . . . 7  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( A  +  ( 0  x.  D ) )  =  A )
3332eqeq2d 2468 . . . . . 6  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
x  =  ( A  +  ( 0  x.  D ) )  <->  x  =  A ) )
34 c0ex 9490 . . . . . . 7  |-  0  e.  _V
35 oveq1 6206 . . . . . . . . 9  |-  ( n  =  0  ->  (
n  x.  D )  =  ( 0  x.  D ) )
3635oveq2d 6215 . . . . . . . 8  |-  ( n  =  0  ->  ( A  +  ( n  x.  D ) )  =  ( A  +  ( 0  x.  D ) ) )
3736eqeq2d 2468 . . . . . . 7  |-  ( n  =  0  ->  (
x  =  ( A  +  ( n  x.  D ) )  <->  x  =  ( A  +  (
0  x.  D ) ) ) )
3834, 37ceqsexv 3113 . . . . . 6  |-  ( E. n ( n  =  0  /\  x  =  ( A  +  ( n  x.  D ) ) )  <->  x  =  ( A  +  (
0  x.  D ) ) )
39 elsn 3998 . . . . . 6  |-  ( x  e.  { A }  <->  x  =  A )
4033, 38, 393bitr4g 288 . . . . 5  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( E. n ( n  =  0  /\  x  =  ( A  +  ( n  x.  D ) ) )  <->  x  e.  { A } ) )
41 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  n  e.  ( ( 0  +  1 ) ... K
) )
42 0p1e1 10543 . . . . . . . . . . . . . . 15  |-  ( 0  +  1 )  =  1
4342oveq1i 6209 . . . . . . . . . . . . . 14  |-  ( ( 0  +  1 ) ... K )  =  ( 1 ... K
)
4441, 43syl6eleq 2552 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  n  e.  ( 1 ... K
) )
45 1zzd 10787 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  1  e.  ZZ )
464adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  K  e.  NN0 )
4746nn0zd 10855 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  K  e.  ZZ )
48 elfzelz 11569 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ( 0  +  1 ) ... K )  ->  n  e.  ZZ )
4948adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  n  e.  ZZ )
50 fzsubel 11610 . . . . . . . . . . . . . 14  |-  ( ( ( 1  e.  ZZ  /\  K  e.  ZZ )  /\  ( n  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( n  e.  ( 1 ... K )  <-> 
( n  -  1 )  e.  ( ( 1  -  1 ) ... ( K  - 
1 ) ) ) )
5145, 47, 49, 45, 50syl22anc 1220 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( n  e.  ( 1 ... K
)  <->  ( n  - 
1 )  e.  ( ( 1  -  1 ) ... ( K  -  1 ) ) ) )
5244, 51mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( n  -  1 )  e.  ( ( 1  -  1 ) ... ( K  -  1 ) ) )
53 1m1e0 10500 . . . . . . . . . . . . 13  |-  ( 1  -  1 )  =  0
5453oveq1i 6209 . . . . . . . . . . . 12  |-  ( ( 1  -  1 ) ... ( K  - 
1 ) )  =  ( 0 ... ( K  -  1 ) )
5552, 54syl6eleq 2552 . . . . . . . . . . 11  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( n  -  1 )  e.  ( 0 ... ( K  -  1 ) ) )
5649zcnd 10858 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  n  e.  CC )
576a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  1  e.  CC )
5826adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  D  e.  CC )
5956, 57, 58subdird 9911 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( (
n  -  1 )  x.  D )  =  ( ( n  x.  D )  -  (
1  x.  D ) ) )
6058mulid2d 9514 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( 1  x.  D )  =  D )
6160oveq2d 6215 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( (
n  x.  D )  -  ( 1  x.  D ) )  =  ( ( n  x.  D )  -  D
) )
6259, 61eqtrd 2495 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( (
n  -  1 )  x.  D )  =  ( ( n  x.  D )  -  D
) )
6362oveq2d 6215 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( D  +  ( ( n  -  1 )  x.  D ) )  =  ( D  +  ( ( n  x.  D
)  -  D ) ) )
6456, 58mulcld 9516 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( n  x.  D )  e.  CC )
6558, 64pncan3d 9832 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( D  +  ( ( n  x.  D )  -  D ) )  =  ( n  x.  D
) )
6663, 65eqtr2d 2496 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( n  x.  D )  =  ( D  +  ( ( n  -  1 )  x.  D ) ) )
6766oveq2d 6215 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( A  +  ( n  x.  D ) )  =  ( A  +  ( D  +  ( ( n  -  1 )  x.  D ) ) ) )
6830adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  A  e.  CC )
69 subcl 9719 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( n  -  1 )  e.  CC )
7056, 6, 69sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( n  -  1 )  e.  CC )
7170, 58mulcld 9516 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( (
n  -  1 )  x.  D )  e.  CC )
7268, 58, 71addassd 9518 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( ( A  +  D )  +  ( ( n  -  1 )  x.  D ) )  =  ( A  +  ( D  +  ( ( n  -  1 )  x.  D ) ) ) )
7367, 72eqtr4d 2498 . . . . . . . . . . 11  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( A  +  ( n  x.  D ) )  =  ( ( A  +  D )  +  ( ( n  -  1 )  x.  D ) ) )
74 oveq1 6206 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  - 
1 )  ->  (
m  x.  D )  =  ( ( n  -  1 )  x.  D ) )
7574oveq2d 6215 . . . . . . . . . . . . 13  |-  ( m  =  ( n  - 
1 )  ->  (
( A  +  D
)  +  ( m  x.  D ) )  =  ( ( A  +  D )  +  ( ( n  - 
1 )  x.  D
) ) )
7675eqeq2d 2468 . . . . . . . . . . . 12  |-  ( m  =  ( n  - 
1 )  ->  (
( A  +  ( n  x.  D ) )  =  ( ( A  +  D )  +  ( m  x.  D ) )  <->  ( A  +  ( n  x.  D ) )  =  ( ( A  +  D )  +  ( ( n  -  1 )  x.  D ) ) ) )
7776rspcev 3177 . . . . . . . . . . 11  |-  ( ( ( n  -  1 )  e.  ( 0 ... ( K  - 
1 ) )  /\  ( A  +  (
n  x.  D ) )  =  ( ( A  +  D )  +  ( ( n  -  1 )  x.  D ) ) )  ->  E. m  e.  ( 0 ... ( K  -  1 ) ) ( A  +  ( n  x.  D ) )  =  ( ( A  +  D )  +  ( m  x.  D ) ) )
7855, 73, 77syl2anc 661 . . . . . . . . . 10  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  E. m  e.  ( 0 ... ( K  -  1 ) ) ( A  +  ( n  x.  D
) )  =  ( ( A  +  D
)  +  ( m  x.  D ) ) )
79 eqeq1 2458 . . . . . . . . . . 11  |-  ( x  =  ( A  +  ( n  x.  D
) )  ->  (
x  =  ( ( A  +  D )  +  ( m  x.  D ) )  <->  ( A  +  ( n  x.  D ) )  =  ( ( A  +  D )  +  ( m  x.  D ) ) ) )
8079rexbidv 2864 . . . . . . . . . 10  |-  ( x  =  ( A  +  ( n  x.  D
) )  ->  ( E. m  e.  (
0 ... ( K  - 
1 ) ) x  =  ( ( A  +  D )  +  ( m  x.  D
) )  <->  E. m  e.  ( 0 ... ( K  -  1 ) ) ( A  +  ( n  x.  D
) )  =  ( ( A  +  D
)  +  ( m  x.  D ) ) ) )
8178, 80syl5ibrcom 222 . . . . . . . . 9  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  n  e.  (
( 0  +  1 ) ... K ) )  ->  ( x  =  ( A  +  ( n  x.  D
) )  ->  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( ( A  +  D
)  +  ( m  x.  D ) ) ) )
8281expimpd 603 . . . . . . . 8  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
( n  e.  ( ( 0  +  1 ) ... K )  /\  x  =  ( A  +  ( n  x.  D ) ) )  ->  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( ( A  +  D
)  +  ( m  x.  D ) ) ) )
8382exlimdv 1691 . . . . . . 7  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( E. n ( n  e.  ( ( 0  +  1 ) ... K
)  /\  x  =  ( A  +  (
n  x.  D ) ) )  ->  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( ( A  +  D
)  +  ( m  x.  D ) ) ) )
84 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  m  e.  ( 0 ... ( K  -  1 ) ) )
85 0zd 10768 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  0  e.  ZZ )
864adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  K  e.  NN0 )
8786nn0zd 10855 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  K  e.  ZZ )
88 peano2zm 10798 . . . . . . . . . . . . . 14  |-  ( K  e.  ZZ  ->  ( K  -  1 )  e.  ZZ )
8987, 88syl 16 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( K  - 
1 )  e.  ZZ )
90 elfzelz 11569 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 0 ... ( K  -  1 ) )  ->  m  e.  ZZ )
9190adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  m  e.  ZZ )
92 1zzd 10787 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  1  e.  ZZ )
93 fzaddel 11609 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  ZZ  /\  ( K  -  1 )  e.  ZZ )  /\  ( m  e.  ZZ  /\  1  e.  ZZ ) )  -> 
( m  e.  ( 0 ... ( K  -  1 ) )  <-> 
( m  +  1 )  e.  ( ( 0  +  1 ) ... ( ( K  -  1 )  +  1 ) ) ) )
9485, 89, 91, 92, 93syl22anc 1220 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( m  e.  ( 0 ... ( K  -  1 ) )  <->  ( m  + 
1 )  e.  ( ( 0  +  1 ) ... ( ( K  -  1 )  +  1 ) ) ) )
9584, 94mpbid 210 . . . . . . . . . . 11  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( m  + 
1 )  e.  ( ( 0  +  1 ) ... ( ( K  -  1 )  +  1 ) ) )
9686nn0cnd 10748 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  K  e.  CC )
97 npcan 9729 . . . . . . . . . . . . 13  |-  ( ( K  e.  CC  /\  1  e.  CC )  ->  ( ( K  - 
1 )  +  1 )  =  K )
9896, 6, 97sylancl 662 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( ( K  -  1 )  +  1 )  =  K )
9998oveq2d 6215 . . . . . . . . . . 11  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( ( 0  +  1 ) ... ( ( K  - 
1 )  +  1 ) )  =  ( ( 0  +  1 ) ... K ) )
10095, 99eleqtrd 2544 . . . . . . . . . 10  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( m  + 
1 )  e.  ( ( 0  +  1 ) ... K ) )
10130adantr 465 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  A  e.  CC )
10226adantr 465 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  D  e.  CC )
10391zcnd 10858 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  m  e.  CC )
104103, 102mulcld 9516 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( m  x.  D )  e.  CC )
105101, 102, 104addassd 9518 . . . . . . . . . . 11  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( ( A  +  D )  +  ( m  x.  D
) )  =  ( A  +  ( D  +  ( m  x.  D ) ) ) )
1066a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  1  e.  CC )
107103, 106, 102adddird 9521 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( ( m  +  1 )  x.  D )  =  ( ( m  x.  D
)  +  ( 1  x.  D ) ) )
108102, 104addcomd 9681 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( D  +  ( m  x.  D
) )  =  ( ( m  x.  D
)  +  D ) )
109102mulid2d 9514 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( 1  x.  D )  =  D )
110109oveq2d 6215 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( ( m  x.  D )  +  ( 1  x.  D
) )  =  ( ( m  x.  D
)  +  D ) )
111108, 110eqtr4d 2498 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( D  +  ( m  x.  D
) )  =  ( ( m  x.  D
)  +  ( 1  x.  D ) ) )
112107, 111eqtr4d 2498 . . . . . . . . . . . 12  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( ( m  +  1 )  x.  D )  =  ( D  +  ( m  x.  D ) ) )
113112oveq2d 6215 . . . . . . . . . . 11  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( A  +  ( ( m  + 
1 )  x.  D
) )  =  ( A  +  ( D  +  ( m  x.  D ) ) ) )
114105, 113eqtr4d 2498 . . . . . . . . . 10  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( ( A  +  D )  +  ( m  x.  D
) )  =  ( A  +  ( ( m  +  1 )  x.  D ) ) )
115 ovex 6224 . . . . . . . . . . 11  |-  ( m  +  1 )  e. 
_V
116 eleq1 2526 . . . . . . . . . . . 12  |-  ( n  =  ( m  + 
1 )  ->  (
n  e.  ( ( 0  +  1 ) ... K )  <->  ( m  +  1 )  e.  ( ( 0  +  1 ) ... K
) ) )
117 oveq1 6206 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  + 
1 )  ->  (
n  x.  D )  =  ( ( m  +  1 )  x.  D ) )
118117oveq2d 6215 . . . . . . . . . . . . 13  |-  ( n  =  ( m  + 
1 )  ->  ( A  +  ( n  x.  D ) )  =  ( A  +  ( ( m  +  1 )  x.  D ) ) )
119118eqeq2d 2468 . . . . . . . . . . . 12  |-  ( n  =  ( m  + 
1 )  ->  (
( ( A  +  D )  +  ( m  x.  D ) )  =  ( A  +  ( n  x.  D ) )  <->  ( ( A  +  D )  +  ( m  x.  D ) )  =  ( A  +  ( ( m  +  1 )  x.  D ) ) ) )
120116, 119anbi12d 710 . . . . . . . . . . 11  |-  ( n  =  ( m  + 
1 )  ->  (
( n  e.  ( ( 0  +  1 ) ... K )  /\  ( ( A  +  D )  +  ( m  x.  D
) )  =  ( A  +  ( n  x.  D ) ) )  <->  ( ( m  +  1 )  e.  ( ( 0  +  1 ) ... K
)  /\  ( ( A  +  D )  +  ( m  x.  D ) )  =  ( A  +  ( ( m  +  1 )  x.  D ) ) ) ) )
121115, 120spcev 3168 . . . . . . . . . 10  |-  ( ( ( m  +  1 )  e.  ( ( 0  +  1 ) ... K )  /\  ( ( A  +  D )  +  ( m  x.  D ) )  =  ( A  +  ( ( m  +  1 )  x.  D ) ) )  ->  E. n ( n  e.  ( ( 0  +  1 ) ... K )  /\  (
( A  +  D
)  +  ( m  x.  D ) )  =  ( A  +  ( n  x.  D
) ) ) )
122100, 114, 121syl2anc 661 . . . . . . . . 9  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  E. n ( n  e.  ( ( 0  +  1 ) ... K )  /\  (
( A  +  D
)  +  ( m  x.  D ) )  =  ( A  +  ( n  x.  D
) ) ) )
123 eqeq1 2458 . . . . . . . . . . 11  |-  ( x  =  ( ( A  +  D )  +  ( m  x.  D
) )  ->  (
x  =  ( A  +  ( n  x.  D ) )  <->  ( ( A  +  D )  +  ( m  x.  D ) )  =  ( A  +  ( n  x.  D ) ) ) )
124123anbi2d 703 . . . . . . . . . 10  |-  ( x  =  ( ( A  +  D )  +  ( m  x.  D
) )  ->  (
( n  e.  ( ( 0  +  1 ) ... K )  /\  x  =  ( A  +  ( n  x.  D ) ) )  <->  ( n  e.  ( ( 0  +  1 ) ... K
)  /\  ( ( A  +  D )  +  ( m  x.  D ) )  =  ( A  +  ( n  x.  D ) ) ) ) )
125124exbidv 1681 . . . . . . . . 9  |-  ( x  =  ( ( A  +  D )  +  ( m  x.  D
) )  ->  ( E. n ( n  e.  ( ( 0  +  1 ) ... K
)  /\  x  =  ( A  +  (
n  x.  D ) ) )  <->  E. n
( n  e.  ( ( 0  +  1 ) ... K )  /\  ( ( A  +  D )  +  ( m  x.  D
) )  =  ( A  +  ( n  x.  D ) ) ) ) )
126122, 125syl5ibrcom 222 . . . . . . . 8  |-  ( ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  /\  m  e.  (
0 ... ( K  - 
1 ) ) )  ->  ( x  =  ( ( A  +  D )  +  ( m  x.  D ) )  ->  E. n
( n  e.  ( ( 0  +  1 ) ... K )  /\  x  =  ( A  +  ( n  x.  D ) ) ) ) )
127126rexlimdva 2945 . . . . . . 7  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( E. m  e.  (
0 ... ( K  - 
1 ) ) x  =  ( ( A  +  D )  +  ( m  x.  D
) )  ->  E. n
( n  e.  ( ( 0  +  1 ) ... K )  /\  x  =  ( A  +  ( n  x.  D ) ) ) ) )
12883, 127impbid 191 . . . . . 6  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( E. n ( n  e.  ( ( 0  +  1 ) ... K
)  /\  x  =  ( A  +  (
n  x.  D ) ) )  <->  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( ( A  +  D
)  +  ( m  x.  D ) ) ) )
129 nnaddcl 10454 . . . . . . . 8  |-  ( ( A  e.  NN  /\  D  e.  NN )  ->  ( A  +  D
)  e.  NN )
1301293adant1 1006 . . . . . . 7  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( A  +  D )  e.  NN )
131 vdwapval 14151 . . . . . . 7  |-  ( ( K  e.  NN0  /\  ( A  +  D
)  e.  NN  /\  D  e.  NN )  ->  ( x  e.  ( ( A  +  D
) (AP `  K
) D )  <->  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( ( A  +  D
)  +  ( m  x.  D ) ) ) )
132130, 131syld3an2 1266 . . . . . 6  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
x  e.  ( ( A  +  D ) (AP `  K ) D )  <->  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( ( A  +  D
)  +  ( m  x.  D ) ) ) )
133128, 132bitr4d 256 . . . . 5  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( E. n ( n  e.  ( ( 0  +  1 ) ... K
)  /\  x  =  ( A  +  (
n  x.  D ) ) )  <->  x  e.  ( ( A  +  D ) (AP `  K ) D ) ) )
13440, 133orbi12d 709 . . . 4  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
( E. n ( n  =  0  /\  x  =  ( A  +  ( n  x.  D ) ) )  \/  E. n ( n  e.  ( ( 0  +  1 ) ... K )  /\  x  =  ( A  +  ( n  x.  D ) ) ) )  <->  ( x  e. 
{ A }  \/  x  e.  ( ( A  +  D )
(AP `  K ) D ) ) ) )
135 elun 3604 . . . 4  |-  ( x  e.  ( { A }  u.  ( ( A  +  D )
(AP `  K ) D ) )  <->  ( x  e.  { A }  \/  x  e.  ( ( A  +  D )
(AP `  K ) D ) ) )
136134, 135syl6bbr 263 . . 3  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
( E. n ( n  =  0  /\  x  =  ( A  +  ( n  x.  D ) ) )  \/  E. n ( n  e.  ( ( 0  +  1 ) ... K )  /\  x  =  ( A  +  ( n  x.  D ) ) ) )  <->  x  e.  ( { A }  u.  (
( A  +  D
) (AP `  K
) D ) ) ) )
13724, 136bitrd 253 . 2  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (
x  e.  ( A (AP `  ( K  +  1 ) ) D )  <->  x  e.  ( { A }  u.  ( ( A  +  D ) (AP `  K ) D ) ) ) )
138137eqrdv 2451 1  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( A (AP `  ( K  +  1 ) ) D )  =  ( { A }  u.  ( ( A  +  D ) (AP `  K ) D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758   E.wrex 2799    u. cun 3433   {csn 3984   ` cfv 5525  (class class class)co 6199   CCcc 9390   0cc0 9392   1c1 9393    + caddc 9395    x. cmul 9397    - cmin 9705   NNcn 10432   NN0cn0 10689   ZZcz 10756   ZZ>=cuz 10971   ...cfz 11553  APcvdwa 14143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-er 7210  df-en 7420  df-dom 7421  df-sdom 7422  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-nn 10433  df-n0 10690  df-z 10757  df-uz 10972  df-fz 11554  df-vdwap 14146
This theorem is referenced by:  vdwapid1  14153  vdwap1  14155  vdwlem1  14159  vdwlem5  14163  vdwlem8  14166  vdwlem12  14170
  Copyright terms: Public domain W3C validator