Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashun Structured version   Visualization version   GIF version

Theorem hashun 13032
 Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashun ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (#‘(𝐴𝐵)) = ((#‘𝐴) + (#‘𝐵)))

Proof of Theorem hashun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ficardun 8907 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (card‘(𝐴𝐵)) = ((card‘𝐴) +𝑜 (card‘𝐵)))
21fveq2d 6107 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴𝐵))) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝐵))))
3 unfi 8112 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
4 eqid 2610 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
54hashgval 12982 . . . 4 ((𝐴𝐵) ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴𝐵))) = (#‘(𝐴𝐵)))
63, 5syl 17 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴𝐵))) = (#‘(𝐴𝐵)))
763adant3 1074 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘(𝐴𝐵))) = (#‘(𝐴𝐵)))
8 ficardom 8670 . . . . 5 (𝐴 ∈ Fin → (card‘𝐴) ∈ ω)
9 ficardom 8670 . . . . 5 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
104hashgadd 13027 . . . . 5 (((card‘𝐴) ∈ ω ∧ (card‘𝐵) ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝐵))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))))
118, 9, 10syl2an 493 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝐵))) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))))
124hashgval 12982 . . . . 5 (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (#‘𝐴))
134hashgval 12982 . . . . 5 (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (#‘𝐵))
1412, 13oveqan12d 6568 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) + ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) = ((#‘𝐴) + (#‘𝐵)))
1511, 14eqtrd 2644 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((#‘𝐴) + (#‘𝐵)))
16153adant3 1074 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘((card‘𝐴) +𝑜 (card‘𝐵))) = ((#‘𝐴) + (#‘𝐵)))
172, 7, 163eqtr3d 2652 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) = ∅) → (#‘(𝐴𝐵)) = ((#‘𝐴) + (#‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∪ cun 3538   ∩ cin 3539  ∅c0 3874   ↦ cmpt 4643   ↾ cres 5040  ‘cfv 5804  (class class class)co 6549  ωcom 6957  reccrdg 7392   +𝑜 coa 7444  Fincfn 7841  cardccrd 8644  0cc0 9815  1c1 9816   + caddc 9818  #chash 12979 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-hash 12980 This theorem is referenced by:  hashun2  13033  hashun3  13034  hashunx  13036  hashunsng  13042  hashssdif  13061  hashxplem  13080  hashfun  13084  hashbclem  13093  hashf1lem2  13097  climcndslem1  14420  climcndslem2  14421  phiprmpw  15319  prmreclem5  15462  4sqlem11  15497  ppidif  24689  mumul  24707  ppiub  24729  lgsquadlem2  24906  lgsquadlem3  24907  cusgrasizeinds  26004  vdgrfiun  26429  numclwwlk3lem  26635  ex-hash  26702  ballotlemgun  29913  ballotth  29926  subfacp1lem1  30415  subfacp1lem6  30421  poimirlem27  32606  eldioph2lem1  36341  cusgrsizeinds  40668  eupth2eucrct  41385  av-numclwwlk3lem  41538
 Copyright terms: Public domain W3C validator