Proof of Theorem rp-isfinite6
Step | Hyp | Ref
| Expression |
1 | | exmid 430 |
. . . 4
⊢ (𝐴 = ∅ ∨ ¬ 𝐴 = ∅) |
2 | 1 | biantrur 526 |
. . 3
⊢ (𝐴 ∈ Fin ↔ ((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ 𝐴 ∈ Fin)) |
3 | | andir 908 |
. . 3
⊢ (((𝐴 = ∅ ∨ ¬ 𝐴 = ∅) ∧ 𝐴 ∈ Fin) ↔ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin))) |
4 | 2, 3 | bitri 263 |
. 2
⊢ (𝐴 ∈ Fin ↔ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin))) |
5 | | simpl 472 |
. . . 4
⊢ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) → 𝐴 = ∅) |
6 | | 0fin 8073 |
. . . . . 6
⊢ ∅
∈ Fin |
7 | | eleq1a 2683 |
. . . . . 6
⊢ (∅
∈ Fin → (𝐴 =
∅ → 𝐴 ∈
Fin)) |
8 | 6, 7 | ax-mp 5 |
. . . . 5
⊢ (𝐴 = ∅ → 𝐴 ∈ Fin) |
9 | 8 | ancli 572 |
. . . 4
⊢ (𝐴 = ∅ → (𝐴 = ∅ ∧ 𝐴 ∈ Fin)) |
10 | 5, 9 | impbii 198 |
. . 3
⊢ ((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ 𝐴 = ∅) |
11 | | rp-isfinite5 36882 |
. . . . . 6
⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0
(1...𝑛) ≈ 𝐴) |
12 | | df-rex 2902 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ0 (1...𝑛)
≈ 𝐴 ↔
∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) |
13 | 11, 12 | bitri 263 |
. . . . 5
⊢ (𝐴 ∈ Fin ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) |
14 | 13 | anbi2i 726 |
. . . 4
⊢ ((¬
𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ (¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))) |
15 | | df-rex 2902 |
. . . . 5
⊢
(∃𝑛 ∈
ℕ (1...𝑛) ≈
𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) |
16 | | en0 7905 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
17 | 16 | bicomi 213 |
. . . . . . . . . . . . . 14
⊢ (𝐴 = ∅ ↔ 𝐴 ≈
∅) |
18 | | ensymb 7890 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ≈ ∅ ↔ ∅
≈ 𝐴) |
19 | 17, 18 | bitri 263 |
. . . . . . . . . . . . 13
⊢ (𝐴 = ∅ ↔ ∅
≈ 𝐴) |
20 | 19 | notbii 309 |
. . . . . . . . . . . 12
⊢ (¬
𝐴 = ∅ ↔ ¬
∅ ≈ 𝐴) |
21 | | elnn0 11171 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
↔ (𝑛 ∈ ℕ
∨ 𝑛 =
0)) |
22 | 21 | anbi1i 727 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0
∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∨ 𝑛 = 0) ∧ (1...𝑛) ≈ 𝐴)) |
23 | | andir 908 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∨ 𝑛 = 0) ∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))) |
24 | 22, 23 | bitri 263 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0
∧ (1...𝑛) ≈ 𝐴) ↔ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))) |
25 | 20, 24 | anbi12i 729 |
. . . . . . . . . . 11
⊢ ((¬
𝐴 = ∅ ∧ (𝑛 ∈ ℕ0
∧ (1...𝑛) ≈ 𝐴)) ↔ (¬ ∅ ≈
𝐴 ∧ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))) |
26 | | andi 907 |
. . . . . . . . . . 11
⊢ ((¬
∅ ≈ 𝐴 ∧
((𝑛 ∈ ℕ ∧
(1...𝑛) ≈ 𝐴) ∨ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))) |
27 | 25, 26 | bitri 263 |
. . . . . . . . . 10
⊢ ((¬
𝐴 = ∅ ∧ (𝑛 ∈ ℕ0
∧ (1...𝑛) ≈ 𝐴)) ↔ ((¬ ∅
≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))) |
28 | | 3anass 1035 |
. . . . . . . . . . 11
⊢ ((¬
∅ ≈ 𝐴 ∧
𝑛 ∈ ℕ ∧
(1...𝑛) ≈ 𝐴) ↔ (¬ ∅ ≈
𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴))) |
29 | | 3anass 1035 |
. . . . . . . . . . 11
⊢ ((¬
∅ ≈ 𝐴 ∧
𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴) ↔ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))) |
30 | 28, 29 | orbi12i 542 |
. . . . . . . . . 10
⊢ (((¬
∅ ≈ 𝐴 ∧
𝑛 ∈ ℕ ∧
(1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈
𝐴 ∧ 𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ((¬ ∅ ≈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) ∨ (¬ ∅ ≈ 𝐴 ∧ (𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)))) |
31 | 27, 30 | sylbb2 227 |
. . . . . . . . 9
⊢ ((¬
𝐴 = ∅ ∧ (𝑛 ∈ ℕ0
∧ (1...𝑛) ≈ 𝐴)) → ((¬ ∅
≈ 𝐴 ∧ 𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈ 𝐴 ∧ 𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴))) |
32 | | simp2 1055 |
. . . . . . . . . 10
⊢ ((¬
∅ ≈ 𝐴 ∧
𝑛 ∈ ℕ ∧
(1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ) |
33 | | oveq2 6557 |
. . . . . . . . . . . 12
⊢ (𝑛 = 0 → (1...𝑛) = (1...0)) |
34 | | fz10 12233 |
. . . . . . . . . . . 12
⊢ (1...0) =
∅ |
35 | 33, 34 | syl6eq 2660 |
. . . . . . . . . . 11
⊢ (𝑛 = 0 → (1...𝑛) = ∅) |
36 | | simp2 1055 |
. . . . . . . . . . . . 13
⊢ ((¬
∅ ≈ 𝐴 ∧
(1...𝑛) = ∅ ∧
(1...𝑛) ≈ 𝐴) → (1...𝑛) = ∅) |
37 | | simp3 1056 |
. . . . . . . . . . . . 13
⊢ ((¬
∅ ≈ 𝐴 ∧
(1...𝑛) = ∅ ∧
(1...𝑛) ≈ 𝐴) → (1...𝑛) ≈ 𝐴) |
38 | 36, 37 | eqbrtrrd 4607 |
. . . . . . . . . . . 12
⊢ ((¬
∅ ≈ 𝐴 ∧
(1...𝑛) = ∅ ∧
(1...𝑛) ≈ 𝐴) → ∅ ≈ 𝐴) |
39 | | simp1 1054 |
. . . . . . . . . . . 12
⊢ ((¬
∅ ≈ 𝐴 ∧
(1...𝑛) = ∅ ∧
(1...𝑛) ≈ 𝐴) → ¬ ∅ ≈
𝐴) |
40 | 38, 39 | pm2.21dd 185 |
. . . . . . . . . . 11
⊢ ((¬
∅ ≈ 𝐴 ∧
(1...𝑛) = ∅ ∧
(1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ) |
41 | 35, 40 | syl3an2 1352 |
. . . . . . . . . 10
⊢ ((¬
∅ ≈ 𝐴 ∧
𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴) → 𝑛 ∈ ℕ) |
42 | 32, 41 | jaoi 393 |
. . . . . . . . 9
⊢ (((¬
∅ ≈ 𝐴 ∧
𝑛 ∈ ℕ ∧
(1...𝑛) ≈ 𝐴) ∨ (¬ ∅ ≈
𝐴 ∧ 𝑛 = 0 ∧ (1...𝑛) ≈ 𝐴)) → 𝑛 ∈ ℕ) |
43 | 31, 42 | syl 17 |
. . . . . . . 8
⊢ ((¬
𝐴 = ∅ ∧ (𝑛 ∈ ℕ0
∧ (1...𝑛) ≈ 𝐴)) → 𝑛 ∈ ℕ) |
44 | | simprr 792 |
. . . . . . . 8
⊢ ((¬
𝐴 = ∅ ∧ (𝑛 ∈ ℕ0
∧ (1...𝑛) ≈ 𝐴)) → (1...𝑛) ≈ 𝐴) |
45 | 43, 44 | jca 553 |
. . . . . . 7
⊢ ((¬
𝐴 = ∅ ∧ (𝑛 ∈ ℕ0
∧ (1...𝑛) ≈ 𝐴)) → (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) |
46 | | nngt0 10926 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → 0 <
𝑛) |
47 | | hash0 13019 |
. . . . . . . . . . . . 13
⊢
(#‘∅) = 0 |
48 | 47 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ →
(#‘∅) = 0) |
49 | | nnnn0 11176 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
50 | | hashfz1 12996 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ (#‘(1...𝑛)) =
𝑛) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ →
(#‘(1...𝑛)) = 𝑛) |
52 | 46, 48, 51 | 3brtr4d 4615 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ →
(#‘∅) < (#‘(1...𝑛))) |
53 | | fzfi 12633 |
. . . . . . . . . . . 12
⊢
(1...𝑛) ∈
Fin |
54 | | hashsdom 13031 |
. . . . . . . . . . . 12
⊢ ((∅
∈ Fin ∧ (1...𝑛)
∈ Fin) → ((#‘∅) < (#‘(1...𝑛)) ↔ ∅ ≺ (1...𝑛))) |
55 | 6, 53, 54 | mp2an 704 |
. . . . . . . . . . 11
⊢
((#‘∅) < (#‘(1...𝑛)) ↔ ∅ ≺ (1...𝑛)) |
56 | 52, 55 | sylib 207 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → ∅
≺ (1...𝑛)) |
57 | 56 | anim1i 590 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (∅ ≺ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴)) |
58 | | sdomentr 7979 |
. . . . . . . . . . 11
⊢ ((∅
≺ (1...𝑛) ∧
(1...𝑛) ≈ 𝐴) → ∅ ≺ 𝐴) |
59 | | sdomnen 7870 |
. . . . . . . . . . 11
⊢ (∅
≺ 𝐴 → ¬
∅ ≈ 𝐴) |
60 | 58, 59 | syl 17 |
. . . . . . . . . 10
⊢ ((∅
≺ (1...𝑛) ∧
(1...𝑛) ≈ 𝐴) → ¬ ∅ ≈
𝐴) |
61 | | ensymb 7890 |
. . . . . . . . . . . 12
⊢ (∅
≈ 𝐴 ↔ 𝐴 ≈
∅) |
62 | 61, 16 | bitri 263 |
. . . . . . . . . . 11
⊢ (∅
≈ 𝐴 ↔ 𝐴 = ∅) |
63 | 62 | notbii 309 |
. . . . . . . . . 10
⊢ (¬
∅ ≈ 𝐴 ↔
¬ 𝐴 =
∅) |
64 | 60, 63 | sylib 207 |
. . . . . . . . 9
⊢ ((∅
≺ (1...𝑛) ∧
(1...𝑛) ≈ 𝐴) → ¬ 𝐴 = ∅) |
65 | 57, 64 | syl 17 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → ¬ 𝐴 = ∅) |
66 | 49 | anim1i 590 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) |
67 | 65, 66 | jca 553 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴) → (¬ 𝐴 = ∅ ∧ (𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))) |
68 | 45, 67 | impbii 198 |
. . . . . 6
⊢ ((¬
𝐴 = ∅ ∧ (𝑛 ∈ ℕ0
∧ (1...𝑛) ≈ 𝐴)) ↔ (𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) |
69 | 68 | exbii 1764 |
. . . . 5
⊢
(∃𝑛(¬
𝐴 = ∅ ∧ (𝑛 ∈ ℕ0
∧ (1...𝑛) ≈ 𝐴)) ↔ ∃𝑛(𝑛 ∈ ℕ ∧ (1...𝑛) ≈ 𝐴)) |
70 | | 19.42v 1905 |
. . . . 5
⊢
(∃𝑛(¬
𝐴 = ∅ ∧ (𝑛 ∈ ℕ0
∧ (1...𝑛) ≈ 𝐴)) ↔ (¬ 𝐴 = ∅ ∧ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))) |
71 | 15, 69, 70 | 3bitr2ri 288 |
. . . 4
⊢ ((¬
𝐴 = ∅ ∧
∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) ↔ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴) |
72 | 14, 71 | bitri 263 |
. . 3
⊢ ((¬
𝐴 = ∅ ∧ 𝐴 ∈ Fin) ↔ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴) |
73 | 10, 72 | orbi12i 542 |
. 2
⊢ (((𝐴 = ∅ ∧ 𝐴 ∈ Fin) ∨ (¬ 𝐴 = ∅ ∧ 𝐴 ∈ Fin)) ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)) |
74 | 4, 73 | bitri 263 |
1
⊢ (𝐴 ∈ Fin ↔ (𝐴 = ∅ ∨ ∃𝑛 ∈ ℕ (1...𝑛) ≈ 𝐴)) |