MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcau Structured version   Visualization version   GIF version

Theorem odcau 17842
Description: Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime 𝑃 contains an element of order 𝑃. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
odcau.x 𝑋 = (Base‘𝐺)
odcau.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odcau (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
Distinct variable groups:   𝑔,𝐺   𝑃,𝑔   𝑔,𝑋
Allowed substitution hint:   𝑂(𝑔)

Proof of Theorem odcau
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 odcau.x . . 3 𝑋 = (Base‘𝐺)
2 simpl1 1057 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → 𝐺 ∈ Grp)
3 simpl2 1058 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → 𝑋 ∈ Fin)
4 simpl3 1059 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → 𝑃 ∈ ℙ)
5 1nn0 11185 . . . 4 1 ∈ ℕ0
65a1i 11 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → 1 ∈ ℕ0)
7 prmnn 15226 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
84, 7syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → 𝑃 ∈ ℕ)
98nncnd 10913 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → 𝑃 ∈ ℂ)
109exp1d 12865 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → (𝑃↑1) = 𝑃)
11 simpr 476 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → 𝑃 ∥ (#‘𝑋))
1210, 11eqbrtrd 4605 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → (𝑃↑1) ∥ (#‘𝑋))
131, 2, 3, 4, 6, 12sylow1 17841 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → ∃𝑠 ∈ (SubGrp‘𝐺)(#‘𝑠) = (𝑃↑1))
1410eqeq2d 2620 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → ((#‘𝑠) = (𝑃↑1) ↔ (#‘𝑠) = 𝑃))
1514adantr 480 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((#‘𝑠) = (𝑃↑1) ↔ (#‘𝑠) = 𝑃))
16 fvex 6113 . . . . . . . . . . . 12 (0g𝐺) ∈ V
17 hashsng 13020 . . . . . . . . . . . 12 ((0g𝐺) ∈ V → (#‘{(0g𝐺)}) = 1)
1816, 17ax-mp 5 . . . . . . . . . . 11 (#‘{(0g𝐺)}) = 1
19 simprr 792 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → (#‘𝑠) = 𝑃)
204adantr 480 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → 𝑃 ∈ ℙ)
21 prmuz2 15246 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2220, 21syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → 𝑃 ∈ (ℤ‘2))
2319, 22eqeltrd 2688 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → (#‘𝑠) ∈ (ℤ‘2))
24 eluz2b2 11637 . . . . . . . . . . . . 13 ((#‘𝑠) ∈ (ℤ‘2) ↔ ((#‘𝑠) ∈ ℕ ∧ 1 < (#‘𝑠)))
2524simprbi 479 . . . . . . . . . . . 12 ((#‘𝑠) ∈ (ℤ‘2) → 1 < (#‘𝑠))
2623, 25syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → 1 < (#‘𝑠))
2718, 26syl5eqbr 4618 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → (#‘{(0g𝐺)}) < (#‘𝑠))
28 snfi 7923 . . . . . . . . . . 11 {(0g𝐺)} ∈ Fin
293adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → 𝑋 ∈ Fin)
301subgss 17418 . . . . . . . . . . . . 13 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝑋)
3130ad2antrl 760 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → 𝑠𝑋)
32 ssfi 8065 . . . . . . . . . . . 12 ((𝑋 ∈ Fin ∧ 𝑠𝑋) → 𝑠 ∈ Fin)
3329, 31, 32syl2anc 691 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → 𝑠 ∈ Fin)
34 hashsdom 13031 . . . . . . . . . . 11 (({(0g𝐺)} ∈ Fin ∧ 𝑠 ∈ Fin) → ((#‘{(0g𝐺)}) < (#‘𝑠) ↔ {(0g𝐺)} ≺ 𝑠))
3528, 33, 34sylancr 694 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → ((#‘{(0g𝐺)}) < (#‘𝑠) ↔ {(0g𝐺)} ≺ 𝑠))
3627, 35mpbid 221 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → {(0g𝐺)} ≺ 𝑠)
37 sdomdif 7993 . . . . . . . . 9 ({(0g𝐺)} ≺ 𝑠 → (𝑠 ∖ {(0g𝐺)}) ≠ ∅)
3836, 37syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → (𝑠 ∖ {(0g𝐺)}) ≠ ∅)
39 n0 3890 . . . . . . . 8 ((𝑠 ∖ {(0g𝐺)}) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}))
4038, 39sylib 207 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → ∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}))
41 eldifsn 4260 . . . . . . . . 9 (𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) ↔ (𝑔𝑠𝑔 ≠ (0g𝐺)))
4231adantrr 749 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠𝑋)
43 simprrl 800 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔𝑠)
4442, 43sseldd 3569 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔𝑋)
45 simprrr 801 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑔 ≠ (0g𝐺))
46 simprll 798 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠 ∈ (SubGrp‘𝐺))
4733adantrr 749 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑠 ∈ Fin)
48 odcau.o . . . . . . . . . . . . . . . . . . 19 𝑂 = (od‘𝐺)
4948odsubdvds 17809 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ Fin ∧ 𝑔𝑠) → (𝑂𝑔) ∥ (#‘𝑠))
5046, 47, 43, 49syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∥ (#‘𝑠))
51 simprlr 799 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (#‘𝑠) = 𝑃)
5250, 51breqtrd 4609 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∥ 𝑃)
534adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑃 ∈ ℙ)
542adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝐺 ∈ Grp)
553adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → 𝑋 ∈ Fin)
561, 48odcl2 17805 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑔𝑋) → (𝑂𝑔) ∈ ℕ)
5754, 55, 44, 56syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) ∈ ℕ)
58 dvdsprime 15238 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℙ ∧ (𝑂𝑔) ∈ ℕ) → ((𝑂𝑔) ∥ 𝑃 ↔ ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1)))
5953, 57, 58syl2anc 691 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) ∥ 𝑃 ↔ ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1)))
6052, 59mpbid 221 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) = 𝑃 ∨ (𝑂𝑔) = 1))
6160ord 391 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (¬ (𝑂𝑔) = 𝑃 → (𝑂𝑔) = 1))
62 eqid 2610 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
6348, 62, 1odeq1 17800 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑔𝑋) → ((𝑂𝑔) = 1 ↔ 𝑔 = (0g𝐺)))
6454, 44, 63syl2anc 691 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → ((𝑂𝑔) = 1 ↔ 𝑔 = (0g𝐺)))
6561, 64sylibd 228 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (¬ (𝑂𝑔) = 𝑃𝑔 = (0g𝐺)))
6665necon1ad 2799 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑔 ≠ (0g𝐺) → (𝑂𝑔) = 𝑃))
6745, 66mpd 15 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑂𝑔) = 𝑃)
6844, 67jca 553 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ ((𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃) ∧ (𝑔𝑠𝑔 ≠ (0g𝐺)))) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
6968expr 641 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → ((𝑔𝑠𝑔 ≠ (0g𝐺)) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
7041, 69syl5bi 231 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → (𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) → (𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
7170eximdv 1833 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → (∃𝑔 𝑔 ∈ (𝑠 ∖ {(0g𝐺)}) → ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃)))
7240, 71mpd 15 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
73 df-rex 2902 . . . . . 6 (∃𝑔𝑋 (𝑂𝑔) = 𝑃 ↔ ∃𝑔(𝑔𝑋 ∧ (𝑂𝑔) = 𝑃))
7472, 73sylibr 223 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ (𝑠 ∈ (SubGrp‘𝐺) ∧ (#‘𝑠) = 𝑃)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
7574expr 641 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((#‘𝑠) = 𝑃 → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7615, 75sylbid 229 . . 3 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) ∧ 𝑠 ∈ (SubGrp‘𝐺)) → ((#‘𝑠) = (𝑃↑1) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7776rexlimdva 3013 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → (∃𝑠 ∈ (SubGrp‘𝐺)(#‘𝑠) = (𝑃↑1) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃))
7813, 77mpd 15 1 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ∥ (#‘𝑋)) → ∃𝑔𝑋 (𝑂𝑔) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  cdif 3537  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  csdm 7840  Fincfn 7841  1c1 9816   < clt 9953  cn 10897  2c2 10947  0cn0 11169  cuz 11563  cexp 12722  #chash 12979  cdvds 14821  cprime 15223  Basecbs 15695  0gc0g 15923  Grpcgrp 17245  SubGrpcsubg 17411  odcod 17767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-pc 15380  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-eqg 17416  df-ga 17546  df-od 17771
This theorem is referenced by:  pgpfi  17843  ablfacrplem  18287
  Copyright terms: Public domain W3C validator