MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcau Structured version   Unicode version

Theorem odcau 16823
Description: Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime 
P contains an element of order  P. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
odcau.x  |-  X  =  ( Base `  G
)
odcau.o  |-  O  =  ( od `  G
)
Assertion
Ref Expression
odcau  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. g  e.  X  ( O `  g )  =  P )
Distinct variable groups:    g, G    P, g    g, X
Allowed substitution hint:    O( g)

Proof of Theorem odcau
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 odcau.x . . 3  |-  X  =  ( Base `  G
)
2 simpl1 997 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  G  e.  Grp )
3 simpl2 998 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  X  e.  Fin )
4 simpl3 999 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  Prime )
5 1nn0 10807 . . . 4  |-  1  e.  NN0
65a1i 11 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  1  e.  NN0 )
7 prmnn 14304 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
84, 7syl 16 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  NN )
98nncnd 10547 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  CC )
109exp1d 12287 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( P ^ 1 )  =  P )
11 simpr 459 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  ||  ( # `  X
) )
1210, 11eqbrtrd 4459 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( P ^ 1 )  ||  ( # `  X ) )
131, 2, 3, 4, 6, 12sylow1 16822 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. s  e.  (SubGrp `  G )
( # `  s )  =  ( P ^
1 ) )
1410eqeq2d 2468 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  (
( # `  s )  =  ( P ^
1 )  <->  ( # `  s
)  =  P ) )
1514adantr 463 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  ( P ^ 1 )  <->  ( # `  s
)  =  P ) )
16 fvex 5858 . . . . . . . . . . . 12  |-  ( 0g
`  G )  e. 
_V
17 hashsng 12421 . . . . . . . . . . . 12  |-  ( ( 0g `  G )  e.  _V  ->  ( # `
 { ( 0g
`  G ) } )  =  1 )
1816, 17ax-mp 5 . . . . . . . . . . 11  |-  ( # `  { ( 0g `  G ) } )  =  1
19 simprr 755 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  s
)  =  P )
204adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  P  e.  Prime )
21 prmuz2 14319 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
2220, 21syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  P  e.  ( ZZ>= `  2 )
)
2319, 22eqeltrd 2542 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  s
)  e.  ( ZZ>= ` 
2 ) )
24 eluz2b2 11155 . . . . . . . . . . . . 13  |-  ( (
# `  s )  e.  ( ZZ>= `  2 )  <->  ( ( # `  s
)  e.  NN  /\  1  <  ( # `  s
) ) )
2524simprbi 462 . . . . . . . . . . . 12  |-  ( (
# `  s )  e.  ( ZZ>= `  2 )  ->  1  <  ( # `  s ) )
2623, 25syl 16 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  1  <  (
# `  s )
)
2718, 26syl5eqbr 4472 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  {
( 0g `  G
) } )  < 
( # `  s ) )
28 snfi 7589 . . . . . . . . . . 11  |-  { ( 0g `  G ) }  e.  Fin
293adantr 463 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  X  e.  Fin )
301subgss 16401 . . . . . . . . . . . . 13  |-  ( s  e.  (SubGrp `  G
)  ->  s  C_  X )
3130ad2antrl 725 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  s  C_  X )
32 ssfi 7733 . . . . . . . . . . . 12  |-  ( ( X  e.  Fin  /\  s  C_  X )  -> 
s  e.  Fin )
3329, 31, 32syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  s  e.  Fin )
34 hashsdom 12432 . . . . . . . . . . 11  |-  ( ( { ( 0g `  G ) }  e.  Fin  /\  s  e.  Fin )  ->  ( ( # `  { ( 0g `  G ) } )  <  ( # `  s
)  <->  { ( 0g `  G ) }  ~<  s ) )
3528, 33, 34sylancr 661 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( ( # `
 { ( 0g
`  G ) } )  <  ( # `  s )  <->  { ( 0g `  G ) } 
~<  s ) )
3627, 35mpbid 210 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  { ( 0g `  G ) } 
~<  s )
37 sdomdif 7658 . . . . . . . . 9  |-  ( { ( 0g `  G
) }  ~<  s  ->  ( s  \  {
( 0g `  G
) } )  =/=  (/) )
3836, 37syl 16 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( s  \  { ( 0g `  G ) } )  =/=  (/) )
39 n0 3793 . . . . . . . 8  |-  ( ( s  \  { ( 0g `  G ) } )  =/=  (/)  <->  E. g 
g  e.  ( s 
\  { ( 0g
`  G ) } ) )
4038, 39sylib 196 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g 
g  e.  ( s 
\  { ( 0g
`  G ) } ) )
41 eldifsn 4141 . . . . . . . . 9  |-  ( g  e.  ( s  \  { ( 0g `  G ) } )  <-> 
( g  e.  s  /\  g  =/=  ( 0g `  G ) ) )
4231adantrr 714 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  C_  X
)
43 simprrl 763 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  e.  s )
4442, 43sseldd 3490 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  e.  X
)
45 simprrr 764 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  =/=  ( 0g `  G ) )
46 simprll 761 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  e.  (SubGrp `  G ) )
4733adantrr 714 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  e.  Fin )
48 odcau.o . . . . . . . . . . . . . . . . . . 19  |-  O  =  ( od `  G
)
4948odsubdvds 16790 . . . . . . . . . . . . . . . . . 18  |-  ( ( s  e.  (SubGrp `  G )  /\  s  e.  Fin  /\  g  e.  s )  ->  ( O `  g )  ||  ( # `  s
) )
5046, 47, 43, 49syl3anc 1226 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  ||  ( # `
 s ) )
51 simprlr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( # `  s
)  =  P )
5250, 51breqtrd 4463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  ||  P
)
534adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  P  e.  Prime )
542adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  G  e.  Grp )
553adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  X  e.  Fin )
561, 48odcl2 16786 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  g  e.  X )  ->  ( O `  g )  e.  NN )
5754, 55, 44, 56syl3anc 1226 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  e.  NN )
58 dvdsprime 14314 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  ( O `  g )  e.  NN )  ->  (
( O `  g
)  ||  P  <->  ( ( O `  g )  =  P  \/  ( O `  g )  =  1 ) ) )
5953, 57, 58syl2anc 659 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  ||  P 
<->  ( ( O `  g )  =  P  \/  ( O `  g )  =  1 ) ) )
6052, 59mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  =  P  \/  ( O `
 g )  =  1 ) )
6160ord 375 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( -.  ( O `  g )  =  P  ->  ( O `
 g )  =  1 ) )
62 eqid 2454 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  G )  =  ( 0g `  G
)
6348, 62, 1odeq1 16781 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  g  e.  X )  ->  ( ( O `  g )  =  1  <-> 
g  =  ( 0g
`  G ) ) )
6454, 44, 63syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  =  1  <->  g  =  ( 0g `  G ) ) )
6561, 64sylibd 214 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( -.  ( O `  g )  =  P  ->  g  =  ( 0g `  G
) ) )
6665necon1ad 2670 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( g  =/=  ( 0g `  G
)  ->  ( O `  g )  =  P ) )
6745, 66mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  =  P )
6844, 67jca 530 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( g  e.  X  /\  ( O `
 g )  =  P ) )
6968expr 613 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( (
g  e.  s  /\  g  =/=  ( 0g `  G ) )  -> 
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7041, 69syl5bi 217 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( g  e.  ( s  \  {
( 0g `  G
) } )  -> 
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7170eximdv 1715 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( E. g  g  e.  (
s  \  { ( 0g `  G ) } )  ->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7240, 71mpd 15 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) )
73 df-rex 2810 . . . . . 6  |-  ( E. g  e.  X  ( O `  g )  =  P  <->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) )
7472, 73sylibr 212 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g  e.  X  ( O `  g )  =  P )
7574expr 613 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  P  ->  E. g  e.  X  ( O `  g )  =  P ) )
7615, 75sylbid 215 . . 3  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  ( P ^ 1 )  ->  E. g  e.  X  ( O `  g )  =  P ) )
7776rexlimdva 2946 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( E. s  e.  (SubGrp `  G ) ( # `  s )  =  ( P ^ 1 )  ->  E. g  e.  X  ( O `  g )  =  P ) )
7813, 77mpd 15 1  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. g  e.  X  ( O `  g )  =  P )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1398   E.wex 1617    e. wcel 1823    =/= wne 2649   E.wrex 2805   _Vcvv 3106    \ cdif 3458    C_ wss 3461   (/)c0 3783   {csn 4016   class class class wbr 4439   ` cfv 5570  (class class class)co 6270    ~< csdm 7508   Fincfn 7509   1c1 9482    < clt 9617   NNcn 10531   2c2 10581   NN0cn0 10791   ZZ>=cuz 11082   ^cexp 12148   #chash 12387    || cdvds 14070   Primecprime 14301   Basecbs 14716   0gc0g 14929   Grpcgrp 16252  SubGrpcsubg 16394   odcod 16748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-disj 4411  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-omul 7127  df-er 7303  df-ec 7305  df-qs 7309  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-acn 8314  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591  df-dvds 14071  df-gcd 14229  df-prm 14302  df-pc 14445  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-0g 14931  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-grp 16256  df-minusg 16257  df-sbg 16258  df-mulg 16259  df-subg 16397  df-eqg 16399  df-ga 16527  df-od 16752
This theorem is referenced by:  pgpfi  16824  ablfacrplem  17311
  Copyright terms: Public domain W3C validator