Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem14 Structured version   Visualization version   GIF version

Theorem knoppndvlem14 31686
Description: Lemma for knoppndv 31695. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 7-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem14.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem14.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem14.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem14.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem14.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem14.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem14.m (𝜑𝑀 ∈ ℤ)
knoppndvlem14.n (𝜑𝑁 ∈ ℕ)
knoppndvlem14.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem14 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑦   𝑥,𝐴,𝑖   𝐵,𝑖,𝑛,𝑦   𝑥,𝐵   𝐶,𝑖,𝑛,𝑦   𝑖,𝐽,𝑛,𝑦   𝑖,𝑁,𝑛,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑇(𝑥,𝑖)   𝐹(𝑥,𝑦,𝑖,𝑛)   𝐽(𝑥)   𝑀(𝑥,𝑦,𝑖,𝑛)

Proof of Theorem knoppndvlem14
StepHypRef Expression
1 knoppndvlem14.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 knoppndvlem14.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
3 knoppndvlem14.b . . . . . . . 8 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
43a1i 11 . . . . . . 7 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
5 knoppndvlem14.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
6 knoppndvlem14.j . . . . . . . . 9 (𝜑𝐽 ∈ ℕ0)
76nn0zd 11356 . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
8 knoppndvlem14.m . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
98peano2zd 11361 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
105, 7, 9knoppndvlem1 31673 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) ∈ ℝ)
114, 10eqeltrd 2688 . . . . . 6 (𝜑𝐵 ∈ ℝ)
12 knoppndvlem14.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
1312knoppndvlem3 31675 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
1413simpld 474 . . . . . 6 (𝜑𝐶 ∈ ℝ)
151, 2, 11, 14, 5knoppndvlem5 31677 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) ∈ ℝ)
16 knoppndvlem14.a . . . . . . . 8 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
1716a1i 11 . . . . . . 7 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
185, 7, 8knoppndvlem1 31673 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
1917, 18eqeltrd 2688 . . . . . 6 (𝜑𝐴 ∈ ℝ)
201, 2, 19, 14, 5knoppndvlem5 31677 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖) ∈ ℝ)
2115, 20resubcld 10337 . . . 4 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) ∈ ℝ)
2221recnd 9947 . . 3 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) ∈ ℂ)
2322abscld 14023 . 2 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ∈ ℝ)
2411, 19resubcld 10337 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℝ)
2524recnd 9947 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
2625abscld 14023 . . 3 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
27 fzfid 12634 . . . 4 (𝜑 → (0...(𝐽 − 1)) ∈ Fin)
28 2re 10967 . . . . . . . . 9 2 ∈ ℝ
2928a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
30 nnre 10904 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
315, 30syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
3229, 31remulcld 9949 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ)
3314recnd 9947 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
3433abscld 14023 . . . . . . 7 (𝜑 → (abs‘𝐶) ∈ ℝ)
3532, 34remulcld 9949 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3635adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
37 elfznn0 12302 . . . . . 6 (𝑖 ∈ (0...(𝐽 − 1)) → 𝑖 ∈ ℕ0)
3837adantl 481 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝑖 ∈ ℕ0)
3936, 38reexpcld 12887 . . . 4 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
4027, 39fsumrecl 14312 . . 3 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
4126, 40remulcld 9949 . 2 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ∈ ℝ)
4234, 6reexpcld 12887 . . . 4 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℝ)
43 2ne0 10990 . . . . 5 2 ≠ 0
4443a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
4542, 29, 44redivcld 10732 . . 3 (𝜑 → (((abs‘𝐶)↑𝐽) / 2) ∈ ℝ)
46 1red 9934 . . . 4 (𝜑 → 1 ∈ ℝ)
4735, 46resubcld 10337 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ)
48 0red 9920 . . . . . 6 (𝜑 → 0 ∈ ℝ)
49 0lt1 10429 . . . . . . . 8 0 < 1
5049a1i 11 . . . . . . 7 (𝜑 → 0 < 1)
51 knoppndvlem14.1 . . . . . . . . 9 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
5212, 5, 51knoppndvlem12 31684 . . . . . . . 8 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
5352simprd 478 . . . . . . 7 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
5448, 46, 47, 50, 53lttrd 10077 . . . . . 6 (𝜑 → 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
5548, 54jca 553 . . . . 5 (𝜑 → (0 ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
56 ltne 10013 . . . . 5 ((0 ∈ ℝ ∧ 0 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
5755, 56syl 17 . . . 4 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ≠ 0)
5846, 47, 57redivcld 10732 . . 3 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
5945, 58remulcld 9949 . 2 (𝜑 → ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ∈ ℝ)
601, 2, 19, 11, 12, 6, 5knoppndvlem11 31683 . 2 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
614, 17oveq12d 6567 . . . . . . 7 (𝜑 → (𝐵𝐴) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
6229recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
6331recnd 9947 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
64 nnge1 10923 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
655, 64syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝑁)
6648, 46, 31, 50, 65ltletrd 10076 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑁)
6748, 66jca 553 . . . . . . . . . . . . . . 15 (𝜑 → (0 ∈ ℝ ∧ 0 < 𝑁))
68 ltne 10013 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 0 < 𝑁) → 𝑁 ≠ 0)
6967, 68syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ≠ 0)
7062, 63, 44, 69mulne0d 10558 . . . . . . . . . . . . 13 (𝜑 → (2 · 𝑁) ≠ 0)
717znegcld 11360 . . . . . . . . . . . . 13 (𝜑 → -𝐽 ∈ ℤ)
7232, 70, 71reexpclzd 12896 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℝ)
7372, 29, 44redivcld 10732 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℝ)
7473recnd 9947 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
759zcnd 11359 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℂ)
768zcnd 11359 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
7774, 75, 76subdid 10365 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
7877eqcomd 2616 . . . . . . . 8 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)))
79 1cnd 9935 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
8076, 79pncan2d 10273 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) − 𝑀) = 1)
8180oveq2d 6565 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · 1))
8274mulid1d 9936 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 1) = (((2 · 𝑁)↑-𝐽) / 2))
8378, 81, 823eqtrd 2648 . . . . . . 7 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = (((2 · 𝑁)↑-𝐽) / 2))
8461, 83eqtrd 2644 . . . . . 6 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))
8584fveq2d 6107 . . . . 5 (𝜑 → (abs‘(𝐵𝐴)) = (abs‘(((2 · 𝑁)↑-𝐽) / 2)))
8672recnd 9947 . . . . . . 7 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
8786, 62, 44absdivd 14042 . . . . . 6 (𝜑 → (abs‘(((2 · 𝑁)↑-𝐽) / 2)) = ((abs‘((2 · 𝑁)↑-𝐽)) / (abs‘2)))
8862, 63mulcld 9939 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
8988, 70, 713jca 1235 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0 ∧ -𝐽 ∈ ℤ))
90 absexpz 13893 . . . . . . . . 9 (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0 ∧ -𝐽 ∈ ℤ) → (abs‘((2 · 𝑁)↑-𝐽)) = ((abs‘(2 · 𝑁))↑-𝐽))
9189, 90syl 17 . . . . . . . 8 (𝜑 → (abs‘((2 · 𝑁)↑-𝐽)) = ((abs‘(2 · 𝑁))↑-𝐽))
9262, 63absmuld 14041 . . . . . . . . . 10 (𝜑 → (abs‘(2 · 𝑁)) = ((abs‘2) · (abs‘𝑁)))
93 0le2 10988 . . . . . . . . . . . . . 14 0 ≤ 2
9428, 93pm3.2i 470 . . . . . . . . . . . . 13 (2 ∈ ℝ ∧ 0 ≤ 2)
95 absid 13884 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
9694, 95ax-mp 5 . . . . . . . . . . . 12 (abs‘2) = 2
9796a1i 11 . . . . . . . . . . 11 (𝜑 → (abs‘2) = 2)
9848, 31, 66ltled 10064 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑁)
9931, 98absidd 14009 . . . . . . . . . . 11 (𝜑 → (abs‘𝑁) = 𝑁)
10097, 99oveq12d 6567 . . . . . . . . . 10 (𝜑 → ((abs‘2) · (abs‘𝑁)) = (2 · 𝑁))
10192, 100eqtrd 2644 . . . . . . . . 9 (𝜑 → (abs‘(2 · 𝑁)) = (2 · 𝑁))
102101oveq1d 6564 . . . . . . . 8 (𝜑 → ((abs‘(2 · 𝑁))↑-𝐽) = ((2 · 𝑁)↑-𝐽))
10391, 102eqtrd 2644 . . . . . . 7 (𝜑 → (abs‘((2 · 𝑁)↑-𝐽)) = ((2 · 𝑁)↑-𝐽))
104103, 97oveq12d 6567 . . . . . 6 (𝜑 → ((abs‘((2 · 𝑁)↑-𝐽)) / (abs‘2)) = (((2 · 𝑁)↑-𝐽) / 2))
10587, 104eqtrd 2644 . . . . 5 (𝜑 → (abs‘(((2 · 𝑁)↑-𝐽) / 2)) = (((2 · 𝑁)↑-𝐽) / 2))
10685, 105eqtrd 2644 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) = (((2 · 𝑁)↑-𝐽) / 2))
10735recnd 9947 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℂ)
10852simpld 474 . . . . . 6 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
109107, 108, 6geoser 14438 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) = ((1 − (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / (1 − ((2 · 𝑁) · (abs‘𝐶)))))
110107, 6expcld 12870 . . . . . 6 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) ∈ ℂ)
111108necomd 2837 . . . . . 6 (𝜑 → 1 ≠ ((2 · 𝑁) · (abs‘𝐶)))
11279, 110, 79, 107, 111div2subd 10730 . . . . 5 (𝜑 → ((1 − (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / (1 − ((2 · 𝑁) · (abs‘𝐶)))) = (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
113109, 112eqtrd 2644 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) = (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
114106, 113oveq12d 6567 . . 3 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) = ((((2 · 𝑁)↑-𝐽) / 2) · (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
115113, 40eqeltrrd 2689 . . . . 5 (𝜑 → (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
11635, 6reexpcld 12887 . . . . . 6 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) ∈ ℝ)
117116, 47, 57redivcld 10732 . . . . 5 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℝ)
118 2rp 11713 . . . . . . 7 2 ∈ ℝ+
119118a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ+)
120119rpgt0d 11751 . . . . . . . . . 10 (𝜑 → 0 < 2)
12129, 31, 120, 66mulgt0d 10071 . . . . . . . . 9 (𝜑 → 0 < (2 · 𝑁))
12232, 71, 1213jca 1235 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)))
123 expgt0 12755 . . . . . . . 8 (((2 · 𝑁) ∈ ℝ ∧ -𝐽 ∈ ℤ ∧ 0 < (2 · 𝑁)) → 0 < ((2 · 𝑁)↑-𝐽))
124122, 123syl 17 . . . . . . 7 (𝜑 → 0 < ((2 · 𝑁)↑-𝐽))
12548, 72, 124ltled 10064 . . . . . 6 (𝜑 → 0 ≤ ((2 · 𝑁)↑-𝐽))
12672, 119, 125divge0d 11788 . . . . 5 (𝜑 → 0 ≤ (((2 · 𝑁)↑-𝐽) / 2))
127116, 46resubcld 10337 . . . . . 6 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) ∈ ℝ)
12847, 54elrpd 11745 . . . . . 6 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℝ+)
129116lem1d 10836 . . . . . 6 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) ≤ (((2 · 𝑁) · (abs‘𝐶))↑𝐽))
130127, 116, 128, 129lediv1dd 11806 . . . . 5 (𝜑 → (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ≤ ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1)))
131115, 117, 73, 126, 130lemul2ad 10843 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ≤ ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
13247recnd 9947 . . . . . . 7 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) − 1) ∈ ℂ)
133110, 132, 57divrecd 10683 . . . . . 6 (𝜑 → ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1)) = ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
134133oveq2d 6565 . . . . 5 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
13558recnd 9947 . . . . . . 7 (𝜑 → (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)) ∈ ℂ)
13674, 110, 135mulassd 9942 . . . . . 6 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))))
137136eqcomd 2616 . . . . 5 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1)))) = (((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
13886, 110, 62, 44div23d 10717 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / 2) = ((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)))
139138eqcomd 2616 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = ((((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / 2))
14088, 70jca 553 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0))
14134recnd 9947 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝐶) ∈ ℂ)
14212, 5, 51knoppndvlem13 31685 . . . . . . . . . . . . . 14 (𝜑𝐶 ≠ 0)
14333, 142absne0d 14034 . . . . . . . . . . . . 13 (𝜑 → (abs‘𝐶) ≠ 0)
144141, 143jca 553 . . . . . . . . . . . 12 (𝜑 → ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0))
145140, 144, 73jca 1235 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ))
146 mulexpz 12762 . . . . . . . . . . 11 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ ((abs‘𝐶) ∈ ℂ ∧ (abs‘𝐶) ≠ 0) ∧ 𝐽 ∈ ℤ) → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
147145, 146syl 17 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁) · (abs‘𝐶))↑𝐽) = (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽)))
148147oveq2d 6565 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽))))
14988, 6expcld 12870 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
15042recnd 9947 . . . . . . . . . . 11 (𝜑 → ((abs‘𝐶)↑𝐽) ∈ ℂ)
15186, 149, 150mulassd 9942 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)) = (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽))))
152151eqcomd 2616 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁)↑𝐽) · ((abs‘𝐶)↑𝐽))) = ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)))
153140, 71, 7jca32 556 . . . . . . . . . . . . . 14 (𝜑 → (((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (-𝐽 ∈ ℤ ∧ 𝐽 ∈ ℤ)))
154 expaddz 12766 . . . . . . . . . . . . . 14 ((((2 · 𝑁) ∈ ℂ ∧ (2 · 𝑁) ≠ 0) ∧ (-𝐽 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((2 · 𝑁)↑(-𝐽 + 𝐽)) = (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)))
155153, 154syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝑁)↑(-𝐽 + 𝐽)) = (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)))
156155eqcomd 2616 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) = ((2 · 𝑁)↑(-𝐽 + 𝐽)))
15771zcnd 11359 . . . . . . . . . . . . . . 15 (𝜑 → -𝐽 ∈ ℂ)
1586nn0cnd 11230 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ ℂ)
159157, 158addcomd 10117 . . . . . . . . . . . . . 14 (𝜑 → (-𝐽 + 𝐽) = (𝐽 + -𝐽))
160158negidd 10261 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + -𝐽) = 0)
161159, 160eqtrd 2644 . . . . . . . . . . . . 13 (𝜑 → (-𝐽 + 𝐽) = 0)
162161oveq2d 6565 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁)↑(-𝐽 + 𝐽)) = ((2 · 𝑁)↑0))
16388exp0d 12864 . . . . . . . . . . . 12 (𝜑 → ((2 · 𝑁)↑0) = 1)
164156, 162, 1633eqtrd 2648 . . . . . . . . . . 11 (𝜑 → (((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) = 1)
165164oveq1d 6564 . . . . . . . . . 10 (𝜑 → ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)) = (1 · ((abs‘𝐶)↑𝐽)))
166150mulid2d 9937 . . . . . . . . . 10 (𝜑 → (1 · ((abs‘𝐶)↑𝐽)) = ((abs‘𝐶)↑𝐽))
167165, 166eqtrd 2644 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑-𝐽) · ((2 · 𝑁)↑𝐽)) · ((abs‘𝐶)↑𝐽)) = ((abs‘𝐶)↑𝐽))
168148, 152, 1673eqtrd 2648 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = ((abs‘𝐶)↑𝐽))
169168oveq1d 6564 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑-𝐽) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) / 2) = (((abs‘𝐶)↑𝐽) / 2))
170139, 169eqtrd 2644 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) = (((abs‘𝐶)↑𝐽) / 2))
171170oveq1d 6564 . . . . 5 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (((2 · 𝑁) · (abs‘𝐶))↑𝐽)) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
172134, 137, 1713eqtrd 2648 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((((2 · 𝑁) · (abs‘𝐶))↑𝐽) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) = ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
173131, 172breqtrd 4609 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · (((((2 · 𝑁) · (abs‘𝐶))↑𝐽) − 1) / (((2 · 𝑁) · (abs‘𝐶)) − 1))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
174114, 173eqbrtrd 4605 . 2 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
17523, 41, 59, 60, 174letrd 10073 1 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((((abs‘𝐶)↑𝐽) / 2) · (1 / (((2 · 𝑁) · (abs‘𝐶)) − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  +crp 11708  (,)cioo 12046  ...cfz 12197  cfl 12453  cexp 12722  abscabs 13822  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioo 12050  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by:  knoppndvlem15  31687
  Copyright terms: Public domain W3C validator