MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnge1 Structured version   Visualization version   GIF version

Theorem nnge1 10923
Description: A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.)
Assertion
Ref Expression
nnge1 (𝐴 ∈ ℕ → 1 ≤ 𝐴)

Proof of Theorem nnge1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4587 . 2 (𝑥 = 1 → (1 ≤ 𝑥 ↔ 1 ≤ 1))
2 breq2 4587 . 2 (𝑥 = 𝑦 → (1 ≤ 𝑥 ↔ 1 ≤ 𝑦))
3 breq2 4587 . 2 (𝑥 = (𝑦 + 1) → (1 ≤ 𝑥 ↔ 1 ≤ (𝑦 + 1)))
4 breq2 4587 . 2 (𝑥 = 𝐴 → (1 ≤ 𝑥 ↔ 1 ≤ 𝐴))
5 1le1 10534 . 2 1 ≤ 1
6 nnre 10904 . . 3 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
7 recn 9905 . . . . . 6 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
87addid1d 10115 . . . . 5 (𝑦 ∈ ℝ → (𝑦 + 0) = 𝑦)
98breq2d 4595 . . . 4 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ 1 ≤ 𝑦))
10 0lt1 10429 . . . . . . . 8 0 < 1
11 0re 9919 . . . . . . . . 9 0 ∈ ℝ
12 1re 9918 . . . . . . . . 9 1 ∈ ℝ
13 axltadd 9990 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 < 1 → (𝑦 + 0) < (𝑦 + 1)))
1411, 12, 13mp3an12 1406 . . . . . . . 8 (𝑦 ∈ ℝ → (0 < 1 → (𝑦 + 0) < (𝑦 + 1)))
1510, 14mpi 20 . . . . . . 7 (𝑦 ∈ ℝ → (𝑦 + 0) < (𝑦 + 1))
16 readdcl 9898 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 + 0) ∈ ℝ)
1711, 16mpan2 703 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 0) ∈ ℝ)
18 peano2re 10088 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
19 lttr 9993 . . . . . . . . 9 (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2012, 19mp3an3 1405 . . . . . . . 8 (((𝑦 + 0) ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2117, 18, 20syl2anc 691 . . . . . . 7 (𝑦 ∈ ℝ → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1))
2215, 21mpand 707 . . . . . 6 (𝑦 ∈ ℝ → ((𝑦 + 1) < 1 → (𝑦 + 0) < 1))
2322con3d 147 . . . . 5 (𝑦 ∈ ℝ → (¬ (𝑦 + 0) < 1 → ¬ (𝑦 + 1) < 1))
24 lenlt 9995 . . . . . 6 ((1 ∈ ℝ ∧ (𝑦 + 0) ∈ ℝ) → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1))
2512, 17, 24sylancr 694 . . . . 5 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1))
26 lenlt 9995 . . . . . 6 ((1 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1))
2712, 18, 26sylancr 694 . . . . 5 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1))
2823, 25, 273imtr4d 282 . . . 4 (𝑦 ∈ ℝ → (1 ≤ (𝑦 + 0) → 1 ≤ (𝑦 + 1)))
299, 28sylbird 249 . . 3 (𝑦 ∈ ℝ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1)))
306, 29syl 17 . 2 (𝑦 ∈ ℕ → (1 ≤ 𝑦 → 1 ≤ (𝑦 + 1)))
311, 2, 3, 4, 5, 30nnind 10915 1 (𝐴 ∈ ℕ → 1 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wcel 1977   class class class wbr 4583  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cn 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898
This theorem is referenced by:  nngt1ne1  10924  nnle1eq1  10925  nngt0  10926  nnnlt1  10927  nnrecgt0  10935  nnge1d  10940  elnnnn0c  11215  elnnz1  11280  zltp1le  11304  nn0ledivnn  11817  elfz1b  12279  fzo1fzo0n0  12386  elfzom1elp1fzo  12402  fzo0sn0fzo1  12424  addmodlteq  12607  nnlesq  12830  digit1  12860  faclbnd  12939  faclbnd3  12941  faclbnd4lem1  12942  faclbnd4lem4  12945  fstwrdne0  13200  swrdtrcfv  13293  swrdccatwrd  13320  divalglem1  14955  coprmgcdb  15200  isprm3  15234  pockthg  15448  infpn2  15455  chfacfpmmulgsum2  20489  dscmet  22187  ovolunlem1a  23071  vitali  23188  plyeq0lem  23770  logtayllem  24205  leibpi  24469  vmalelog  24730  chtublem  24736  logfaclbnd  24747  bposlem1  24809  gausslemma2dlem1a  24890  dchrisum0lem1  25005  logdivbnd  25045  pntlemn  25089  ostth2lem3  25124  clwwisshclwwlem  26334  clwlkfclwwlk  26371  lmatfvlem  29209  eulerpartlems  29749  eulerpartlemb  29757  ballotlem2  29877  fz0n  30869  nndivlub  31627  knoppndvlem1  31673  knoppndvlem2  31674  knoppndvlem7  31679  knoppndvlem11  31683  knoppndvlem14  31686  fzsplit1nn0  36335  pell1qrgaplem  36455  pellqrex  36461  monotoddzzfi  36525  jm2.23  36581  sumnnodd  38697  dvnmul  38833  wallispilem4  38961  wallispilem5  38962  wallispi  38963  wallispi2lem1  38964  stirlinglem5  38971  stirlinglem13  38979  dirkertrigeqlem1  38991  fouriersw  39124  etransclem24  39151  iccpartigtl  39961  fmtnodvds  39994  lighneallem2  40061  clwwisshclwwslem  41234  clwlksfclwwlk  41269  logbpw2m1  42159  blennnelnn  42168  blenpw2m1  42171  dignnld  42195
  Copyright terms: Public domain W3C validator