Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliood Structured version   Visualization version   GIF version

Theorem eliood 38567
Description: Membership in an open real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliood.1 (𝜑𝐴 ∈ ℝ*)
eliood.2 (𝜑𝐵 ∈ ℝ*)
eliood.3 (𝜑𝐶 ∈ ℝ)
eliood.4 (𝜑𝐴 < 𝐶)
eliood.5 (𝜑𝐶 < 𝐵)
Assertion
Ref Expression
eliood (𝜑𝐶 ∈ (𝐴(,)𝐵))

Proof of Theorem eliood
StepHypRef Expression
1 eliood.3 . 2 (𝜑𝐶 ∈ ℝ)
2 eliood.4 . 2 (𝜑𝐴 < 𝐶)
3 eliood.5 . 2 (𝜑𝐶 < 𝐵)
4 eliood.1 . . 3 (𝜑𝐴 ∈ ℝ*)
5 eliood.2 . . 3 (𝜑𝐵 ∈ ℝ*)
6 elioo2 12087 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
74, 5, 6syl2anc 691 . 2 (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
81, 2, 3, 7mpbir3and 1238 1 (𝜑𝐶 ∈ (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  w3a 1031  wcel 1977   class class class wbr 4583  (class class class)co 6549  cr 9814  *cxr 9952   < clt 9953  (,)cioo 12046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioo 12050
This theorem is referenced by:  ioomidp  38587  iocopn  38593  iooshift  38595  icoopn  38598  qinioo  38609  qelioo  38620  icomnfinre  38626  ressioosup  38629  ressiooinf  38631  limciccioolb  38688  limcicciooub  38704  lptre2pt  38707  limcresiooub  38709  limcresioolb  38710  limcleqr  38711  cncfiooiccre  38781  dvbdfbdioolem2  38819  dvbdfbdioo  38820  ioodvbdlimc1lem1  38821  ioodvbdlimc1lem2  38822  ioodvbdlimc2lem  38824  itgioocnicc  38869  dirkercncflem1  38996  dirkercncflem4  38999  fourierdlem10  39010  fourierdlem20  39020  fourierdlem25  39025  fourierdlem27  39027  fourierdlem28  39028  fourierdlem31  39031  fourierdlem32  39032  fourierdlem33  39033  fourierdlem40  39040  fourierdlem41  39041  fourierdlem43  39043  fourierdlem44  39044  fourierdlem46  39045  fourierdlem48  39047  fourierdlem49  39048  fourierdlem57  39056  fourierdlem59  39058  fourierdlem60  39059  fourierdlem61  39060  fourierdlem62  39061  fourierdlem64  39063  fourierdlem68  39067  fourierdlem73  39072  fourierdlem74  39073  fourierdlem75  39074  fourierdlem76  39075  fourierdlem78  39077  fourierdlem81  39080  fourierdlem82  39081  fourierdlem84  39083  fourierdlem89  39088  fourierdlem90  39089  fourierdlem91  39090  fourierdlem92  39091  fourierdlem93  39092  fourierdlem97  39096  fourierdlem103  39102  fourierdlem104  39103  fourierdlem107  39106  fourierdlem109  39108  fourierdlem111  39110  fourierdlem112  39111  sqwvfourb  39122  fourierswlem  39123  fouriersw  39124  qndenserrnbllem  39190  ioorrnopnlem  39200  ioorrnopnxrlem  39202  hspdifhsp  39506  hspmbllem2  39517  pimiooltgt  39598  pimrecltneg  39610  smfresal  39673  smfmullem2  39677
  Copyright terms: Public domain W3C validator