Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspdifhsp Structured version   Visualization version   GIF version

Theorem hspdifhsp 39506
Description: A n-dimensional half-open interval is the intersection of the difference of half spaces. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspdifhsp.x (𝜑𝑋 ∈ Fin)
hspdifhsp.n (𝜑𝑋 ≠ ∅)
hspdifhsp.a (𝜑𝐴:𝑋⟶ℝ)
hspdifhsp.b (𝜑𝐵:𝑋⟶ℝ)
hspdifhsp.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
Assertion
Ref Expression
hspdifhsp (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
Distinct variable groups:   𝐴,𝑖,𝑙,𝑥,𝑦   𝐵,𝑖,𝑙,𝑥,𝑦   𝑖,𝐻,𝑙,𝑥,𝑦   𝑖,𝑋,𝑙,𝑥,𝑦   𝜑,𝑖,𝑙,𝑥,𝑦

Proof of Theorem hspdifhsp
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1830 . . . . . . . 8 𝑖𝜑
2 nfcv 2751 . . . . . . . . 9 𝑖𝑓
3 nfixp1 7814 . . . . . . . . 9 𝑖X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))
42, 3nfel 2763 . . . . . . . 8 𝑖 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))
51, 4nfan 1816 . . . . . . 7 𝑖(𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
6 ixpfn 7800 . . . . . . . . . . . . 13 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → 𝑓 Fn 𝑋)
76ad2antlr 759 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 Fn 𝑋)
8 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
98oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) = (-∞(,)(𝐵𝑖)))
10 iftrue 4042 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) = (-∞(,)(𝐵𝑖)))
119, 10eqtr4d 2647 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) = if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
12 eqimss 3620 . . . . . . . . . . . . . . . . 17 ((-∞(,)(𝐵𝑘)) = if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
1311, 12syl 17 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
14 ioossre 12106 . . . . . . . . . . . . . . . . 17 (-∞(,)(𝐵𝑘)) ⊆ ℝ
15 iffalse 4045 . . . . . . . . . . . . . . . . 17 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) = ℝ)
1614, 15syl5sseqr 3617 . . . . . . . . . . . . . . . 16 𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
1713, 16pm2.61i 175 . . . . . . . . . . . . . . 15 (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)
18 mnfxr 9975 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
1918a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → -∞ ∈ ℝ*)
20 hspdifhsp.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵:𝑋⟶ℝ)
2120ffvelrnda 6267 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
2221rexrd 9968 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
2322adantlr 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
24 hspdifhsp.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴:𝑋⟶ℝ)
2524ffvelrnda 6267 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
26 icossre 12125 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
2725, 22, 26syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
2827adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
29 simpl 472 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
30 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → 𝑘𝑋)
31 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐴𝑖) = (𝐴𝑘))
32 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐵𝑖) = (𝐵𝑘))
3331, 32oveq12d 6567 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑘 → ((𝐴𝑖)[,)(𝐵𝑖)) = ((𝐴𝑘)[,)(𝐵𝑘)))
3433fvixp 7799 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3529, 30, 34syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3635adantll 746 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3728, 36sseldd 3569 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
3837mnfltd 11834 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → -∞ < (𝑓𝑘))
3925rexrd 9968 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
4039adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
41 icoltub 38579 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ* ∧ (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘))) → (𝑓𝑘) < (𝐵𝑘))
4240, 23, 36, 41syl3anc 1318 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) < (𝐵𝑘))
4319, 23, 37, 38, 42eliood 38567 . . . . . . . . . . . . . . 15 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (-∞(,)(𝐵𝑘)))
4417, 43sseldi 3566 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
4544adantlr 747 . . . . . . . . . . . . 13 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
4645ralrimiva 2949 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
477, 46jca 553 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)))
48 vex 3176 . . . . . . . . . . . 12 𝑓 ∈ V
4948elixp 7801 . . . . . . . . . . 11 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)))
5047, 49sylibr 223 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
51 hspdifhsp.h . . . . . . . . . . . . 13 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
52 equequ1 1939 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑘 → (𝑖 = 𝑙𝑘 = 𝑙))
5352ifbid 4058 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5453cbvixpv 7812 . . . . . . . . . . . . . . . 16 X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)
5554a1i 11 . . . . . . . . . . . . . . 15 ((𝑙𝑥𝑦 ∈ ℝ) → X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5655mpt2eq3ia 6618 . . . . . . . . . . . . . 14 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5756mpteq2i 4669 . . . . . . . . . . . . 13 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
5851, 57eqtri 2632 . . . . . . . . . . . 12 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
59 hspdifhsp.x . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
6059adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝑋 ∈ Fin)
61 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝑖𝑋)
6220adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → 𝐵:𝑋⟶ℝ)
6362, 61ffvelrnd 6268 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
6458, 60, 61, 63hspval 39499 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
6564adantlr 747 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
6650, 65eleqtrrd 2691 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
6718a1i 11 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → -∞ ∈ ℝ*)
6824adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐴:𝑋⟶ℝ)
6968, 61ffvelrnd 6268 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
7069rexrd 9968 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
7170adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝐴𝑖) ∈ ℝ*)
72 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
7358, 60, 61, 69hspval 39499 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐴𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7473adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑖(𝐻𝑋)(𝐴𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7572, 74eleqtrd 2690 . . . . . . . . . . . . 13 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7661adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑖𝑋)
77 iftrue 4042 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (-∞(,)(𝐴𝑖)))
7877fvixp 7799 . . . . . . . . . . . . 13 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
7975, 76, 78syl2anc 691 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
80 iooltub 38582 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ (𝐴𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8167, 71, 79, 80syl3anc 1318 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8281adantllr 751 . . . . . . . . . 10 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8370adantlr 747 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
8463rexrd 9968 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
8584adantlr 747 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
8648elixp 7801 . . . . . . . . . . . . . . . . 17 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
8786biimpi 205 . . . . . . . . . . . . . . . 16 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
8887simprd 478 . . . . . . . . . . . . . . 15 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
89 rspa 2914 . . . . . . . . . . . . . . 15 ((∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
9088, 89sylan 487 . . . . . . . . . . . . . 14 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
9190adantll 746 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
92 icogelb 12096 . . . . . . . . . . . . 13 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))) → (𝐴𝑖) ≤ (𝑓𝑖))
9383, 85, 91, 92syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ (𝑓𝑖))
9469adantlr 747 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
95 icossre 12125 . . . . . . . . . . . . . . . 16 (((𝐴𝑖) ∈ ℝ ∧ (𝐵𝑖) ∈ ℝ*) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9669, 84, 95syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9796adantlr 747 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9897, 91sseldd 3569 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
9994, 98lenltd 10062 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ((𝐴𝑖) ≤ (𝑓𝑖) ↔ ¬ (𝑓𝑖) < (𝐴𝑖)))
10093, 99mpbid 221 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ¬ (𝑓𝑖) < (𝐴𝑖))
101100adantr 480 . . . . . . . . . 10 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → ¬ (𝑓𝑖) < (𝐴𝑖))
10282, 101pm2.65da 598 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
10366, 102eldifd 3551 . . . . . . . 8 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
104103ex 449 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → (𝑖𝑋𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
1055, 104ralrimi 2940 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
106 eliin 4461 . . . . . . 7 (𝑓 ∈ V → (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
10748, 106ax-mp 5 . . . . . 6 (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
108105, 107sylibr 223 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
109108ex 449 . . . 4 (𝜑 → (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
110 hspdifhsp.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
111 n0 3890 . . . . . . . . . . 11 (𝑋 ≠ ∅ ↔ ∃𝑘 𝑘𝑋)
112111biimpi 205 . . . . . . . . . 10 (𝑋 ≠ ∅ → ∃𝑘 𝑘𝑋)
113110, 112syl 17 . . . . . . . . 9 (𝜑 → ∃𝑘 𝑘𝑋)
114113adantr 480 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → ∃𝑘 𝑘𝑋)
115 simpl 472 . . . . . . . . . . . . . . 15 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
116 simpr 476 . . . . . . . . . . . . . . 15 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑘𝑋)
117 id 22 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑘𝑖 = 𝑘)
118117, 32oveq12d 6567 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑖(𝐻𝑋)(𝐵𝑖)) = (𝑘(𝐻𝑋)(𝐵𝑘)))
119117, 31oveq12d 6567 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑖(𝐻𝑋)(𝐴𝑖)) = (𝑘(𝐻𝑋)(𝐴𝑘)))
120118, 119difeq12d 3691 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) = ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘))))
121120eleq2d 2673 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ 𝑓 ∈ ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘)))))
122115, 116, 121eliind 38266 . . . . . . . . . . . . . 14 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 ∈ ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘))))
123122eldifad 3552 . . . . . . . . . . . . 13 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 ∈ (𝑘(𝐻𝑋)(𝐵𝑘)))
124123adantll 746 . . . . . . . . . . . 12 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓 ∈ (𝑘(𝐻𝑋)(𝐵𝑘)))
125 equequ1 1939 . . . . . . . . . . . . . . . . . . 19 (𝑖 = → (𝑖 = 𝑙 = 𝑙))
126125ifbid 4058 . . . . . . . . . . . . . . . . . 18 (𝑖 = → if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = if( = 𝑙, (-∞(,)𝑦), ℝ))
127126cbvixpv 7812 . . . . . . . . . . . . . . . . 17 X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)
128127a1i 11 . . . . . . . . . . . . . . . 16 ((𝑙𝑥𝑦 ∈ ℝ) → X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ))
129128mpt2eq3ia 6618 . . . . . . . . . . . . . . 15 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ))
130129mpteq2i 4669 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)))
13151, 130eqtri 2632 . . . . . . . . . . . . 13 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)))
13259ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑋 ∈ Fin)
133 simpr 476 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑘𝑋)
13421adantlr 747 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
135131, 132, 133, 134hspval 39499 . . . . . . . . . . . 12 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → (𝑘(𝐻𝑋)(𝐵𝑘)) = X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ))
136124, 135eleqtrd 2690 . . . . . . . . . . 11 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ))
137 ixpfn 7800 . . . . . . . . . . 11 (𝑓X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ) → 𝑓 Fn 𝑋)
138136, 137syl 17 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓 Fn 𝑋)
139138ex 449 . . . . . . . . 9 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑘𝑋𝑓 Fn 𝑋))
140139exlimdv 1848 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (∃𝑘 𝑘𝑋𝑓 Fn 𝑋))
141114, 140mpd 15 . . . . . . 7 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓 Fn 𝑋)
142 nfii1 4487 . . . . . . . . . 10 𝑖 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))
1432, 142nfel 2763 . . . . . . . . 9 𝑖 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))
1441, 143nfan 1816 . . . . . . . 8 𝑖(𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
145 simpll 786 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝜑)
146107biimpi 205 . . . . . . . . . . . . 13 (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
147146adantr 480 . . . . . . . . . . . 12 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
148 simpr 476 . . . . . . . . . . . 12 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑖𝑋)
149 rspa 2914 . . . . . . . . . . . 12 ((∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
150147, 148, 149syl2anc 691 . . . . . . . . . . 11 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
151150adantll 746 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
152 simpr 476 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑖𝑋)
15370adantlr 747 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
15484adantlr 747 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
155 simpll 786 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝜑)
156 eldifi 3694 . . . . . . . . . . . . . 14 (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
157156ad2antlr 759 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
158 simpr 476 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑖𝑋)
159 ioossre 12106 . . . . . . . . . . . . . 14 (-∞(,)(𝐵𝑖)) ⊆ ℝ
160 simplr 788 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
16164adantlr 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
162160, 161eleqtrd 2690 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
163 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑖𝑋)
16410fvixp 7799 . . . . . . . . . . . . . . 15 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖)))
165162, 163, 164syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖)))
166159, 165sseldi 3566 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
167155, 157, 158, 166syl21anc 1317 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
168167rexrd 9968 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ*)
169 simpl 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝜑)
170156adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
171169, 170jca 553 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))))
172171ad2antrr 758 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))))
173 simplr 788 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑖𝑋)
174 simpr 476 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) < (𝐴𝑖))
175 ixpfn 7800 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) → 𝑓 Fn 𝑋)
176162, 175syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 Fn 𝑋)
177176adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 Fn 𝑋)
178 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝑓𝑘) = (𝑓𝑖))
179178adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑘) = (𝑓𝑖))
18018a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → -∞ ∈ ℝ*)
18170ad4ant13 1284 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝐴𝑖) ∈ ℝ*)
182166adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) ∈ ℝ)
183182mnfltd 11834 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → -∞ < (𝑓𝑖))
184 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) < (𝐴𝑖))
185180, 181, 182, 183, 184eliood 38567 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
186185adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
187179, 186eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ (-∞(,)(𝐴𝑖)))
188187adantlr 747 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ (-∞(,)(𝐴𝑖)))
18977eqcomd 2616 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (-∞(,)(𝐴𝑖)) = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
190189adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (-∞(,)(𝐴𝑖)) = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
191188, 190eleqtrd 2690 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
19210, 159syl6eqss 3618 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ)
193 ssid 3587 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ ⊆ ℝ
19415, 193syl6eqss 3618 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ)
195192, 194pm2.61i 175 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ
196162adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
197 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → 𝑘𝑋)
198 fvixp2 38384 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
199196, 197, 198syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
200195, 199sseldi 3566 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
201200adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ ℝ)
202 iffalse 4045 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = ℝ)
203202eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . 22 𝑘 = 𝑖 → ℝ = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
204203adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → ℝ = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
205201, 204eleqtrd 2690 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
206205adantllr 751 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
207191, 206pm2.61dan 828 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
208207ralrimiva 2949 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
209177, 208jca 553 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ)))
21048elixp 7801 . . . . . . . . . . . . . . . 16 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ)))
211209, 210sylibr 223 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
21273eqcomd 2616 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (𝑖(𝐻𝑋)(𝐴𝑖)))
213212ad4ant13 1284 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (𝑖(𝐻𝑋)(𝐴𝑖)))
214211, 213eleqtrd 2690 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
215172, 173, 174, 214syl21anc 1317 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
216 eldifn 3695 . . . . . . . . . . . . . 14 (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
217216ad3antlr 763 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
218215, 217pm2.65da 598 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → ¬ (𝑓𝑖) < (𝐴𝑖))
219155, 158, 69syl2anc 691 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
220219, 167lenltd 10062 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → ((𝐴𝑖) ≤ (𝑓𝑖) ↔ ¬ (𝑓𝑖) < (𝐴𝑖)))
221218, 220mpbird 246 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ (𝑓𝑖))
22218a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → -∞ ∈ ℝ*)
22384adantlr 747 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
224 iooltub 38582 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖))) → (𝑓𝑖) < (𝐵𝑖))
225222, 223, 165, 224syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) < (𝐵𝑖))
226155, 157, 158, 225syl21anc 1317 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) < (𝐵𝑖))
227153, 154, 168, 221, 226elicod 12095 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
228145, 151, 152, 227syl21anc 1317 . . . . . . . . 9 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
229228ex 449 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑖𝑋 → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
230144, 229ralrimi 2940 . . . . . . 7 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
231141, 230jca 553 . . . . . 6 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
232231, 86sylibr 223 . . . . 5 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
233232ex 449 . . . 4 (𝜑 → (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))))
234109, 233impbid 201 . . 3 (𝜑 → (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
235234alrimiv 1842 . 2 (𝜑 → ∀𝑓(𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
236 dfcleq 2604 . 2 (X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑓(𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
237235, 236sylibr 223 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cdif 3537  wss 3540  c0 3874  ifcif 4036   ciin 4456   class class class wbr 4583  cmpt 4643   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  Xcixp 7794  Fincfn 7841  cr 9814  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  (,)cioo 12046  [,)cico 12048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioo 12050  df-ico 12052
This theorem is referenced by:  hoimbllem  39520
  Copyright terms: Public domain W3C validator