Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspval Structured version   Visualization version   GIF version

Theorem hspval 39499
 Description: The value of the half-space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspval.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
hspval.x (𝜑𝑋 ∈ Fin)
hspval.i (𝜑𝐼𝑋)
hspval.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hspval (𝜑 → (𝐼(𝐻𝑋)𝑌) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
Distinct variable groups:   𝑖,𝐼,𝑘,𝑦   𝑖,𝑋,𝑘,𝑥,𝑦   𝑖,𝑌,𝑘,𝑦   𝜑,𝑖,𝑘,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,𝑖,𝑘)   𝐼(𝑥)   𝑌(𝑥)

Proof of Theorem hspval
StepHypRef Expression
1 hspval.h . . . 4 𝐻 = (𝑥 ∈ Fin ↦ (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
21a1i 11 . . 3 (𝜑𝐻 = (𝑥 ∈ Fin ↦ (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))))
3 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
4 eqidd 2611 . . . . 5 (𝑥 = 𝑋 → ℝ = ℝ)
5 ixpeq1 7805 . . . . 5 (𝑥 = 𝑋X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))
63, 4, 5mpt2eq123dv 6615 . . . 4 (𝑥 = 𝑋 → (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) = (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
76adantl 481 . . 3 ((𝜑𝑥 = 𝑋) → (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) = (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
8 hspval.x . . 3 (𝜑𝑋 ∈ Fin)
9 reex 9906 . . . . 5 ℝ ∈ V
109a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
11 eqid 2610 . . . . 5 (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) = (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))
1211mpt2exg 7134 . . . 4 ((𝑋 ∈ Fin ∧ ℝ ∈ V) → (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) ∈ V)
138, 10, 12syl2anc 691 . . 3 (𝜑 → (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) ∈ V)
142, 7, 8, 13fvmptd 6197 . 2 (𝜑 → (𝐻𝑋) = (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
15 simpl 472 . . . . . 6 ((𝑖 = 𝐼𝑦 = 𝑌) → 𝑖 = 𝐼)
1615eqeq2d 2620 . . . . 5 ((𝑖 = 𝐼𝑦 = 𝑌) → (𝑘 = 𝑖𝑘 = 𝐼))
17 simpr 476 . . . . . 6 ((𝑖 = 𝐼𝑦 = 𝑌) → 𝑦 = 𝑌)
1817oveq2d 6565 . . . . 5 ((𝑖 = 𝐼𝑦 = 𝑌) → (-∞(,)𝑦) = (-∞(,)𝑌))
1916, 18ifbieq1d 4059 . . . 4 ((𝑖 = 𝐼𝑦 = 𝑌) → if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
2019ixpeq2dv 7810 . . 3 ((𝑖 = 𝐼𝑦 = 𝑌) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
2120adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑦 = 𝑌)) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
22 hspval.i . 2 (𝜑𝐼𝑋)
23 hspval.y . 2 (𝜑𝑌 ∈ ℝ)
24 ovex 6577 . . . . . 6 (-∞(,)𝑌) ∈ V
2524, 9keepel 4105 . . . . 5 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V
2625a1i 11 . . . 4 ((𝜑𝑘𝑋) → if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
2726ralrimiva 2949 . . 3 (𝜑 → ∀𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
28 ixpexg 7818 . . 3 (∀𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V → X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
2927, 28syl 17 . 2 (𝜑X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
3014, 21, 22, 23, 29ovmpt2d 6686 1 (𝜑 → (𝐼(𝐻𝑋)𝑌) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173  ifcif 4036   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Xcixp 7794  Fincfn 7841  ℝcr 9814  -∞cmnf 9951  (,)cioo 12046 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-ixp 7795 This theorem is referenced by:  hspdifhsp  39506  hspmbllem2  39517  hspmbl  39519
 Copyright terms: Public domain W3C validator