Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimiooltgt Structured version   Visualization version   GIF version

Theorem pimiooltgt 39598
Description: The preimage of an open interval is the intersection of the preimage of an unbounded below open interval and an unbounded above open interval. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimiooltgt.1 𝑥𝜑
pimiooltgt.2 (𝜑𝐿 ∈ ℝ*)
pimiooltgt.3 (𝜑𝑅 ∈ ℝ*)
pimiooltgt.4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
pimiooltgt (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑅(𝑥)   𝐿(𝑥)

Proof of Theorem pimiooltgt
StepHypRef Expression
1 pimiooltgt.1 . . . . 5 𝑥𝜑
2 pimiooltgt.2 . . . . . . . . 9 (𝜑𝐿 ∈ ℝ*)
32adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐿 ∈ ℝ*)
433adant3 1074 . . . . . . 7 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐿 ∈ ℝ*)
5 pimiooltgt.3 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
65adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑅 ∈ ℝ*)
763adant3 1074 . . . . . . 7 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝑅 ∈ ℝ*)
8 simp3 1056 . . . . . . 7 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐵 ∈ (𝐿(,)𝑅))
9 iooltub 38582 . . . . . . 7 ((𝐿 ∈ ℝ*𝑅 ∈ ℝ*𝐵 ∈ (𝐿(,)𝑅)) → 𝐵 < 𝑅)
104, 7, 8, 9syl3anc 1318 . . . . . 6 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐵 < 𝑅)
11103exp 1256 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐵 ∈ (𝐿(,)𝑅) → 𝐵 < 𝑅)))
121, 11ralrimi 2940 . . . 4 (𝜑 → ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐵 < 𝑅))
13 ss2rab 3641 . . . 4 ({𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐵 < 𝑅} ↔ ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐵 < 𝑅))
1412, 13sylibr 223 . . 3 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐵 < 𝑅})
15 ioogtlb 38564 . . . . . . 7 ((𝐿 ∈ ℝ*𝑅 ∈ ℝ*𝐵 ∈ (𝐿(,)𝑅)) → 𝐿 < 𝐵)
164, 7, 8, 15syl3anc 1318 . . . . . 6 ((𝜑𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)) → 𝐿 < 𝐵)
17163exp 1256 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐵 ∈ (𝐿(,)𝑅) → 𝐿 < 𝐵)))
181, 17ralrimi 2940 . . . 4 (𝜑 → ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐿 < 𝐵))
19 ss2rab 3641 . . . 4 ({𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐿 < 𝐵} ↔ ∀𝑥𝐴 (𝐵 ∈ (𝐿(,)𝑅) → 𝐿 < 𝐵))
2018, 19sylibr 223 . . 3 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ {𝑥𝐴𝐿 < 𝐵})
2114, 20ssind 3799 . 2 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ⊆ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
22 elinel1 3761 . . . . . . . . 9 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 𝑅})
23 ssrab2 3650 . . . . . . . . . 10 {𝑥𝐴𝐵 < 𝑅} ⊆ 𝐴
2423sseli 3564 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < 𝑅} → 𝑥𝐴)
2522, 24syl 17 . . . . . . . 8 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥𝐴)
2625adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑥𝐴)
2726, 3syldan 486 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐿 ∈ ℝ*)
2826, 6syldan 486 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑅 ∈ ℝ*)
29 pimiooltgt.4 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
3026, 29syldan 486 . . . . . . . . 9 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ∈ ℝ*)
31 mnfxr 9975 . . . . . . . . . . . 12 -∞ ∈ ℝ*
3231a1i 11 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ ∈ ℝ*)
3327mnfled 38550 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ ≤ 𝐿)
34 elinel2 3762 . . . . . . . . . . . . . 14 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐿 < 𝐵})
35 rabidim2 38313 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑥𝐴𝐿 < 𝐵} → 𝐿 < 𝐵)
3634, 35syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝐿 < 𝐵)
3736adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐿 < 𝐵)
3832, 27, 30, 33, 37xrlelttrd 11867 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ < 𝐵)
3932, 30, 38xrltned 38514 . . . . . . . . . 10 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → -∞ ≠ 𝐵)
4039necomd 2837 . . . . . . . . 9 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ≠ -∞)
41 pnfxr 9971 . . . . . . . . . . 11 +∞ ∈ ℝ*
4241a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → +∞ ∈ ℝ*)
43 rabidim2 38313 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴𝐵 < 𝑅} → 𝐵 < 𝑅)
4422, 43syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝐵 < 𝑅)
4544adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 < 𝑅)
46 pnfge 11840 . . . . . . . . . . . 12 (𝑅 ∈ ℝ*𝑅 ≤ +∞)
4728, 46syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑅 ≤ +∞)
4830, 28, 42, 45, 47xrltletrd 11868 . . . . . . . . . 10 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 < +∞)
4930, 42, 48xrltned 38514 . . . . . . . . 9 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ≠ +∞)
5030, 40, 49xrred 38522 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ∈ ℝ)
5127, 28, 50, 37, 45eliood 38567 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝐵 ∈ (𝐿(,)𝑅))
5226, 51jca 553 . . . . . 6 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → (𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)))
53 rabid 3095 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ↔ (𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)))
5452, 53sylibr 223 . . . . 5 ((𝜑𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
5554ex 449 . . . 4 (𝜑 → (𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)}))
561, 55ralrimi 2940 . . 3 (𝜑 → ∀𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
57 nfrab1 3099 . . . . 5 𝑥{𝑥𝐴𝐵 < 𝑅}
58 nfrab1 3099 . . . . 5 𝑥{𝑥𝐴𝐿 < 𝐵}
5957, 58nfin 3782 . . . 4 𝑥({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})
60 nfrab1 3099 . . . 4 𝑥{𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)}
6159, 60dfss3f 3560 . . 3 (({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) ⊆ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ↔ ∀𝑥 ∈ ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵})𝑥 ∈ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
6256, 61sylibr 223 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) ⊆ {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)})
6321, 62eqssd 3585 1 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wnf 1699  wcel 1977  wral 2896  {crab 2900  cin 3539  wss 3540   class class class wbr 4583  (class class class)co 6549  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  (,)cioo 12046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioo 12050
This theorem is referenced by:  smfpimioompt  39671
  Copyright terms: Public domain W3C validator