Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem109 Structured version   Visualization version   GIF version

Theorem fourierdlem109 39108
Description: The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 39091 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem109.a (𝜑𝐴 ∈ ℝ)
fourierdlem109.b (𝜑𝐵 ∈ ℝ)
fourierdlem109.t 𝑇 = (𝐵𝐴)
fourierdlem109.x (𝜑𝑋 ∈ ℝ)
fourierdlem109.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem109.m (𝜑𝑀 ∈ ℕ)
fourierdlem109.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem109.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem109.fper ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem109.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem109.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem109.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem109.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem109.h 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem109.n 𝑁 = ((#‘𝐻) − 1)
fourierdlem109.16 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem109.17 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem109.18 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem109.19 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
Assertion
Ref Expression
fourierdlem109 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝐴,𝑓,𝑗,𝑘,𝑦   𝐴,𝑖,𝑥,𝑗,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖,𝑗   𝐵,𝑓,𝑗,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝑓,𝐸,𝑗,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑗,𝑥,𝑦   𝑓,𝐻,𝑦   𝑥,𝐻   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑖,𝐽,𝑗,𝑥,𝑦   𝑥,𝐿,𝑦   𝑖,𝑀,𝑥,𝑦,𝑗   𝑚,𝑀,𝑝   𝑓,𝑁,𝑗,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑗,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑚,𝑝   𝑥,𝑅,𝑦   𝑆,𝑓,𝑗,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑚,𝑝   𝑇,𝑓,𝑗,𝑘,𝑦   𝑇,𝑖,𝑥   𝑇,𝑚,𝑝   𝑓,𝑋,𝑗,𝑦   𝑖,𝑋,𝑚,𝑝   𝑥,𝑋   𝜑,𝑓,𝑗,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑅(𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑝)   𝐼(𝑗,𝑚,𝑝)   𝐽(𝑓,𝑘,𝑚,𝑝)   𝐿(𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑀(𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑗,𝑘,𝑚,𝑝)   𝑋(𝑘)

Proof of Theorem fourierdlem109
StepHypRef Expression
1 fourierdlem109.a . . . 4 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐴 ∈ ℝ)
3 fourierdlem109.b . . . 4 (𝜑𝐵 ∈ ℝ)
43adantr 480 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐵 ∈ ℝ)
5 fourierdlem109.t . . 3 𝑇 = (𝐵𝐴)
6 fourierdlem109.x . . . . 5 (𝜑𝑋 ∈ ℝ)
76adantr 480 . . . 4 ((𝜑 ∧ 0 < 𝑋) → 𝑋 ∈ ℝ)
8 simpr 476 . . . 4 ((𝜑 ∧ 0 < 𝑋) → 0 < 𝑋)
97, 8elrpd 11745 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑋 ∈ ℝ+)
10 fourierdlem109.p . . 3 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
11 fourierdlem109.m . . . 4 (𝜑𝑀 ∈ ℕ)
1211adantr 480 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑀 ∈ ℕ)
13 fourierdlem109.q . . . 4 (𝜑𝑄 ∈ (𝑃𝑀))
1413adantr 480 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝑄 ∈ (𝑃𝑀))
15 fourierdlem109.f . . . 4 (𝜑𝐹:ℝ⟶ℂ)
1615adantr 480 . . 3 ((𝜑 ∧ 0 < 𝑋) → 𝐹:ℝ⟶ℂ)
17 fourierdlem109.fper . . . 4 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
1817adantlr 747 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
19 fourierdlem109.fcn . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
2019adantlr 747 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
21 fourierdlem109.r . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
2221adantlr 747 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
23 fourierdlem109.l . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
2423adantlr 747 . . 3 (((𝜑 ∧ 0 < 𝑋) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
252, 4, 5, 9, 10, 12, 14, 16, 18, 20, 22, 24fourierdlem108 39107 . 2 ((𝜑 ∧ 0 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
26 oveq2 6557 . . . . . . 7 (𝑋 = 0 → (𝐴𝑋) = (𝐴 − 0))
271recnd 9947 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
2827subid1d 10260 . . . . . . 7 (𝜑 → (𝐴 − 0) = 𝐴)
2926, 28sylan9eqr 2666 . . . . . 6 ((𝜑𝑋 = 0) → (𝐴𝑋) = 𝐴)
30 oveq2 6557 . . . . . . 7 (𝑋 = 0 → (𝐵𝑋) = (𝐵 − 0))
313recnd 9947 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3231subid1d 10260 . . . . . . 7 (𝜑 → (𝐵 − 0) = 𝐵)
3330, 32sylan9eqr 2666 . . . . . 6 ((𝜑𝑋 = 0) → (𝐵𝑋) = 𝐵)
3429, 33oveq12d 6567 . . . . 5 ((𝜑𝑋 = 0) → ((𝐴𝑋)[,](𝐵𝑋)) = (𝐴[,]𝐵))
3534itgeq1d 38848 . . . 4 ((𝜑𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
3635adantlr 747 . . 3 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ 𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
37 simpll 786 . . . 4 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝜑)
3837, 6syl 17 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 ∈ ℝ)
39 0red 9920 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 0 ∈ ℝ)
40 simpr 476 . . . . . 6 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ¬ 𝑋 = 0)
4140neqned 2789 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 ≠ 0)
42 simplr 788 . . . . 5 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ¬ 0 < 𝑋)
4338, 39, 41, 42lttri5d 38454 . . . 4 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → 𝑋 < 0)
446recnd 9947 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℂ)
4527, 44subcld 10271 . . . . . . . . . . 11 (𝜑 → (𝐴𝑋) ∈ ℂ)
4645, 44subnegd 10278 . . . . . . . . . 10 (𝜑 → ((𝐴𝑋) − -𝑋) = ((𝐴𝑋) + 𝑋))
4727, 44npcand 10275 . . . . . . . . . 10 (𝜑 → ((𝐴𝑋) + 𝑋) = 𝐴)
4846, 47eqtrd 2644 . . . . . . . . 9 (𝜑 → ((𝐴𝑋) − -𝑋) = 𝐴)
4931, 44subcld 10271 . . . . . . . . . . 11 (𝜑 → (𝐵𝑋) ∈ ℂ)
5049, 44subnegd 10278 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) − -𝑋) = ((𝐵𝑋) + 𝑋))
5131, 44npcand 10275 . . . . . . . . . 10 (𝜑 → ((𝐵𝑋) + 𝑋) = 𝐵)
5250, 51eqtrd 2644 . . . . . . . . 9 (𝜑 → ((𝐵𝑋) − -𝑋) = 𝐵)
5348, 52oveq12d 6567 . . . . . . . 8 (𝜑 → (((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋)) = (𝐴[,]𝐵))
5453eqcomd 2616 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) = (((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋)))
5554itgeq1d 38848 . . . . . 6 (𝜑 → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥)
5655adantr 480 . . . . 5 ((𝜑𝑋 < 0) → ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥 = ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥)
571, 6resubcld 10337 . . . . . . 7 (𝜑 → (𝐴𝑋) ∈ ℝ)
5857adantr 480 . . . . . 6 ((𝜑𝑋 < 0) → (𝐴𝑋) ∈ ℝ)
593, 6resubcld 10337 . . . . . . 7 (𝜑 → (𝐵𝑋) ∈ ℝ)
6059adantr 480 . . . . . 6 ((𝜑𝑋 < 0) → (𝐵𝑋) ∈ ℝ)
61 eqid 2610 . . . . . 6 ((𝐵𝑋) − (𝐴𝑋)) = ((𝐵𝑋) − (𝐴𝑋))
626renegcld 10336 . . . . . . . 8 (𝜑 → -𝑋 ∈ ℝ)
6362adantr 480 . . . . . . 7 ((𝜑𝑋 < 0) → -𝑋 ∈ ℝ)
646lt0neg1d 10476 . . . . . . . 8 (𝜑 → (𝑋 < 0 ↔ 0 < -𝑋))
6564biimpa 500 . . . . . . 7 ((𝜑𝑋 < 0) → 0 < -𝑋)
6663, 65elrpd 11745 . . . . . 6 ((𝜑𝑋 < 0) → -𝑋 ∈ ℝ+)
67 fourierdlem109.o . . . . . . 7 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
68 fveq2 6103 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑝𝑖) = (𝑝𝑗))
69 oveq1 6556 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
7069fveq2d 6107 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑝‘(𝑖 + 1)) = (𝑝‘(𝑗 + 1)))
7168, 70breq12d 4596 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑝𝑗) < (𝑝‘(𝑗 + 1))))
7271cbvralv 3147 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))
7372anbi2i 726 . . . . . . . . . 10 ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1))))
7473a1i 11 . . . . . . . . 9 (𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) → ((((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))) ↔ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))))
7574rabbiia 3161 . . . . . . . 8 {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))} = {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))}
7675mpteq2i 4669 . . . . . . 7 (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))}) = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
7767, 76eqtri 2632 . . . . . 6 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑗 ∈ (0..^𝑚)(𝑝𝑗) < (𝑝‘(𝑗 + 1)))})
7810, 11, 13fourierdlem11 39011 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
7978simp3d 1068 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
801, 3, 6, 79ltsub1dd 10518 . . . . . . . . . 10 (𝜑 → (𝐴𝑋) < (𝐵𝑋))
81 fourierdlem109.h . . . . . . . . . 10 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
82 fourierdlem109.n . . . . . . . . . 10 𝑁 = ((#‘𝐻) − 1)
83 fourierdlem109.16 . . . . . . . . . 10 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
845, 10, 11, 13, 57, 59, 80, 67, 81, 82, 83fourierdlem54 39053 . . . . . . . . 9 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
8584simpld 474 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
8685simpld 474 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
8786adantr 480 . . . . . 6 ((𝜑𝑋 < 0) → 𝑁 ∈ ℕ)
8885simprd 478 . . . . . . 7 (𝜑𝑆 ∈ (𝑂𝑁))
8988adantr 480 . . . . . 6 ((𝜑𝑋 < 0) → 𝑆 ∈ (𝑂𝑁))
9015adantr 480 . . . . . 6 ((𝜑𝑋 < 0) → 𝐹:ℝ⟶ℂ)
9131, 27, 44nnncan2d 10306 . . . . . . . . . . . 12 (𝜑 → ((𝐵𝑋) − (𝐴𝑋)) = (𝐵𝐴))
9291, 5syl6eqr 2662 . . . . . . . . . . 11 (𝜑 → ((𝐵𝑋) − (𝐴𝑋)) = 𝑇)
9392oveq2d 6565 . . . . . . . . . 10 (𝜑 → (𝑥 + ((𝐵𝑋) − (𝐴𝑋))) = (𝑥 + 𝑇))
9493adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝑥 + ((𝐵𝑋) − (𝐴𝑋))) = (𝑥 + 𝑇))
9594fveq2d 6107 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹‘(𝑥 + 𝑇)))
9695, 17eqtrd 2644 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹𝑥))
9796adantlr 747 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + ((𝐵𝑋) − (𝐴𝑋)))) = (𝐹𝑥))
9811adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℕ)
9913adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑄 ∈ (𝑃𝑀))
10015adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℂ)
10117adantlr 747 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
10219adantlr 747 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
10357adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑋) ∈ ℝ)
10457rexrd 9968 . . . . . . . . . 10 (𝜑 → (𝐴𝑋) ∈ ℝ*)
105 pnfxr 9971 . . . . . . . . . . 11 +∞ ∈ ℝ*
106105a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
10759ltpnfd 11831 . . . . . . . . . 10 (𝜑 → (𝐵𝑋) < +∞)
108104, 106, 59, 80, 107eliood 38567 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
109108adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐵𝑋) ∈ ((𝐴𝑋)(,)+∞))
110 oveq1 6556 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · 𝑇)))
111110eleq1d 2672 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
112111rexbidv 3034 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄))
113112cbvrabv 3172 . . . . . . . . . 10 {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}
114113uneq2i 3726 . . . . . . . . 9 ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
11581, 114eqtri 2632 . . . . . . . 8 𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑦 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
116 fourierdlem109.17 . . . . . . . 8 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
117 fourierdlem109.18 . . . . . . . 8 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
118 simpr 476 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
119 eqid 2610 . . . . . . . 8 ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))
120 eqid 2610 . . . . . . . 8 (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1))))) = (𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))
121 eqid 2610 . . . . . . . 8 (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1))))))) = (𝑦 ∈ (((𝐽‘(𝐸‘(𝑆𝑗))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))(,)((𝐸‘(𝑆‘(𝑗 + 1))) + ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))) ↦ ((𝐹 ↾ ((𝐽‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))))‘(𝑦 − ((𝑆‘(𝑗 + 1)) − (𝐸‘(𝑆‘(𝑗 + 1)))))))
122 fourierdlem109.19 . . . . . . . . 9 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
123 fveq2 6103 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (𝑄𝑗) = (𝑄𝑖))
124123breq1d 4593 . . . . . . . . . . . 12 (𝑗 = 𝑖 → ((𝑄𝑗) ≤ (𝐽‘(𝐸𝑥)) ↔ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))))
125124cbvrabv 3172 . . . . . . . . . . 11 {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}
126125supeq1i 8236 . . . . . . . . . 10 sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < )
127126mpteq2i 4669 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < )) = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
128122, 127eqtri 2632 . . . . . . . 8 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))
12910, 5, 98, 99, 100, 101, 102, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 120, 121, 128fourierdlem90 39089 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
130129adantlr 747 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))
13121adantlr 747 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
132 eqid 2610 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) ↦ 𝑅) = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
13310, 5, 98, 99, 100, 101, 102, 131, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 132fourierdlem89 39088 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
134133adantlr 747 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐽‘(𝐸‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝑗))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐽‘(𝐸‘(𝑆𝑗))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆𝑗)))
13523adantlr 747 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
136 eqid 2610 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) ↦ 𝐿) = (𝑖 ∈ (0..^𝑀) ↦ 𝐿)
13710, 5, 98, 99, 100, 101, 102, 135, 103, 109, 67, 115, 82, 83, 116, 117, 118, 119, 128, 136fourierdlem91 39090 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
138137adantlr 747 . . . . . 6 (((𝜑𝑋 < 0) ∧ 𝑗 ∈ (0..^𝑁)) → if((𝐸‘(𝑆‘(𝑗 + 1))) = (𝑄‘((𝐼‘(𝑆𝑗)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘(𝐼‘(𝑆𝑗))), (𝐹‘(𝐸‘(𝑆‘(𝑗 + 1))))) ∈ ((𝐹 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) lim (𝑆‘(𝑗 + 1))))
13958, 60, 61, 66, 77, 87, 89, 90, 97, 130, 134, 138fourierdlem108 39107 . . . . 5 ((𝜑𝑋 < 0) → ∫(((𝐴𝑋) − -𝑋)[,]((𝐵𝑋) − -𝑋))(𝐹𝑥) d𝑥 = ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥)
14056, 139eqtr2d 2645 . . . 4 ((𝜑𝑋 < 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14137, 43, 140syl2anc 691 . . 3 (((𝜑 ∧ ¬ 0 < 𝑋) ∧ ¬ 𝑋 = 0) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14236, 141pm2.61dan 828 . 2 ((𝜑 ∧ ¬ 0 < 𝑋) → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
14325, 142pm2.61dan 828 1 (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  cun 3538  ifcif 4036  {cpr 4127   class class class wbr 4583  cmpt 4643  ran crn 5039  cres 5040  cio 5766  wf 5800  cfv 5804   Isom wiso 5805  (class class class)co 6549  𝑚 cmap 7744  supcsup 8229  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  cz 11254  (,)cioo 12046  (,]cioc 12047  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  cfl 12453  #chash 12979  cnccncf 22487  citg 23193   lim climc 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-ditg 23417  df-limc 23436  df-dv 23437
This theorem is referenced by:  fourierdlem110  39109
  Copyright terms: Public domain W3C validator