Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem89 Structured version   Visualization version   GIF version

Theorem fourierdlem89 39088
 Description: Given a piecewise continuous function and changing the interval and the partition, the limit at the lower bound of each interval of the moved partition is still finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem89.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem89.t 𝑇 = (𝐵𝐴)
fourierdlem89.m (𝜑𝑀 ∈ ℕ)
fourierdlem89.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem89.f (𝜑𝐹:ℝ⟶ℂ)
fourierdlem89.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
fourierdlem89.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem89.limc ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem89.c (𝜑𝐶 ∈ ℝ)
fourierdlem89.d (𝜑𝐷 ∈ (𝐶(,)+∞))
fourierdlem89.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem89.12 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem89.n 𝑁 = ((#‘𝐻) − 1)
fourierdlem89.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem89.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem89.z 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
fourierdlem89.j (𝜑𝐽 ∈ (0..^𝑁))
fourierdlem89.u 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))
fourierdlem89.20 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
fourierdlem89.21 𝑉 = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
Assertion
Ref Expression
fourierdlem89 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆𝐽)))
Distinct variable groups:   𝐴,𝑓,𝑘,𝑦   𝐴,𝑖,𝑥,𝑘,𝑦   𝐴,𝑚,𝑝,𝑖   𝐵,𝑓,𝑘,𝑦   𝐵,𝑖,𝑥   𝐵,𝑚,𝑝   𝐶,𝑓,𝑦   𝐶,𝑖,𝑚,𝑝   𝑥,𝐶   𝐷,𝑓,𝑦   𝐷,𝑖,𝑚,𝑝   𝑥,𝐷   𝑓,𝐸,𝑘,𝑦   𝑖,𝐸,𝑥   𝑖,𝐹,𝑥,𝑦   𝑓,𝐼,𝑘,𝑦   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥,𝑦   𝑖,𝑀,𝑥   𝑚,𝑀,𝑝   𝑓,𝑁,𝑘,𝑦   𝑖,𝑁,𝑥   𝑚,𝑁,𝑝   𝑄,𝑓,𝑘,𝑦   𝑄,𝑖,𝑥   𝑄,𝑝   𝑆,𝑓,𝑘,𝑦   𝑆,𝑖,𝑥   𝑆,𝑝   𝑇,𝑓,𝑘,𝑦   𝑇,𝑖,𝑥   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝑖,𝑍,𝑥,𝑦   𝜑,𝑓,𝑘,𝑦   𝜑,𝑖,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐶(𝑘)   𝐷(𝑘)   𝑃(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑆(𝑚)   𝑇(𝑚,𝑝)   𝑈(𝑓,𝑖,𝑘,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑓,𝑘,𝑚,𝑝)   𝐻(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝐽(𝑓,𝑘,𝑚,𝑝)   𝑀(𝑦,𝑓,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑉(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑍(𝑓,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem89
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem89.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem89.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
3 fourierdlem89.p . . . . . . . . . . . . . 14 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 39002 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 221 . . . . . . . . . . 11 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 474 . . . . . . . . . 10 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
8 elmapi 7765 . . . . . . . . . 10 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
97, 8syl 17 . . . . . . . . 9 (𝜑𝑄:(0...𝑀)⟶ℝ)
10 fzossfz 12357 . . . . . . . . . 10 (0..^𝑀) ⊆ (0...𝑀)
11 fourierdlem89.t . . . . . . . . . . . . 13 𝑇 = (𝐵𝐴)
12 fourierdlem89.e . . . . . . . . . . . . 13 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
13 fourierdlem89.z . . . . . . . . . . . . 13 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))
14 fourierdlem89.20 . . . . . . . . . . . . 13 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))
153, 2, 1, 11, 12, 13, 14fourierdlem37 39037 . . . . . . . . . . . 12 (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))})))
1615simpld 474 . . . . . . . . . . 11 (𝜑𝐼:ℝ⟶(0..^𝑀))
17 fourierdlem89.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℝ)
18 fourierdlem89.d . . . . . . . . . . . . . . . . . . 19 (𝜑𝐷 ∈ (𝐶(,)+∞))
19 elioore 12076 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (𝐶(,)+∞) → 𝐷 ∈ ℝ)
2018, 19syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℝ)
21 elioo4g 12105 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (𝐶(,)+∞) ↔ ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2218, 21sylib 207 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ ℝ) ∧ (𝐶 < 𝐷𝐷 < +∞)))
2322simprd 478 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐶 < 𝐷𝐷 < +∞))
2423simpld 474 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 < 𝐷)
25 fourierdlem89.o . . . . . . . . . . . . . . . . . 18 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
26 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑥 → (𝑦 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
2726eleq1d 2672 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑥 → ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2827rexbidv 3034 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄))
2928cbvrabv 3172 . . . . . . . . . . . . . . . . . . 19 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}
3029uneq2i 3726 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
31 fourierdlem89.n . . . . . . . . . . . . . . . . . . 19 𝑁 = ((#‘𝐻) − 1)
32 fourierdlem89.12 . . . . . . . . . . . . . . . . . . . . 21 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})
3332fveq2i 6106 . . . . . . . . . . . . . . . . . . . 20 (#‘𝐻) = (#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
3433oveq1i 6559 . . . . . . . . . . . . . . . . . . 19 ((#‘𝐻) − 1) = ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
3531, 34eqtri 2632 . . . . . . . . . . . . . . . . . 18 𝑁 = ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)
36 fourierdlem89.s . . . . . . . . . . . . . . . . . . 19 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
37 isoeq5 6471 . . . . . . . . . . . . . . . . . . . . 21 (𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
3832, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Isom < , < ((0...𝑁), 𝐻) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
3938iotabii 5790 . . . . . . . . . . . . . . . . . . 19 (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
4036, 39eqtri 2632 . . . . . . . . . . . . . . . . . 18 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))
4111, 3, 2, 1, 17, 20, 24, 25, 30, 35, 40fourierdlem54 39053 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))))
4241simpld 474 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
4342simprd 478 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ (𝑂𝑁))
4442simpld 474 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ)
4525fourierdlem2 39002 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
4644, 45syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
4743, 46mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
4847simpld 474 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)))
49 elmapi 7765 . . . . . . . . . . . . 13 (𝑆 ∈ (ℝ ↑𝑚 (0...𝑁)) → 𝑆:(0...𝑁)⟶ℝ)
5048, 49syl 17 . . . . . . . . . . . 12 (𝜑𝑆:(0...𝑁)⟶ℝ)
51 fourierdlem89.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (0..^𝑁))
52 elfzofz 12354 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁))
5351, 52syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑁))
5450, 53ffvelrnd 6268 . . . . . . . . . . 11 (𝜑 → (𝑆𝐽) ∈ ℝ)
5516, 54ffvelrnd 6268 . . . . . . . . . 10 (𝜑 → (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))
5610, 55sseldi 3566 . . . . . . . . 9 (𝜑 → (𝐼‘(𝑆𝐽)) ∈ (0...𝑀))
579, 56ffvelrnd 6268 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ)
5857rexrd 9968 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ*)
5958adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ*)
60 fzofzp1 12431 . . . . . . . . . 10 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝐼‘(𝑆𝐽)) + 1) ∈ (0...𝑀))
6155, 60syl 17 . . . . . . . . 9 (𝜑 → ((𝐼‘(𝑆𝐽)) + 1) ∈ (0...𝑀))
629, 61ffvelrnd 6268 . . . . . . . 8 (𝜑 → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ)
6362rexrd 9968 . . . . . . 7 (𝜑 → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ*)
6463adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑄‘((𝐼‘(𝑆𝐽)) + 1)) ∈ ℝ*)
653, 2, 1fourierdlem11 39011 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
6665simp1d 1066 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
6765simp2d 1067 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
6866, 67iccssred 38574 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
6965simp3d 1068 . . . . . . . . . 10 (𝜑𝐴 < 𝐵)
7066, 67, 69, 13fourierdlem17 39017 . . . . . . . . 9 (𝜑𝑍:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
7166, 67, 69, 11, 12fourierdlem4 39004 . . . . . . . . . 10 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
7271, 54ffvelrnd 6268 . . . . . . . . 9 (𝜑 → (𝐸‘(𝑆𝐽)) ∈ (𝐴(,]𝐵))
7370, 72ffvelrnd 6268 . . . . . . . 8 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ (𝐴[,]𝐵))
7468, 73sseldd 3569 . . . . . . 7 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℝ)
7574adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℝ)
7657adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑄‘(𝐼‘(𝑆𝐽))) ∈ ℝ)
7766rexrd 9968 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
78 iocssre 12124 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
7977, 67, 78syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
80 fzofzp1 12431 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁))
8151, 80syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐽 + 1) ∈ (0...𝑁))
8250, 81ffvelrnd 6268 . . . . . . . . . . . 12 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ)
8371, 82ffvelrnd 6268 . . . . . . . . . . 11 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ (𝐴(,]𝐵))
8479, 83sseldd 3569 . . . . . . . . . 10 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
8547simprrd 793 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))
86 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐽 → (𝑆𝑖) = (𝑆𝐽))
87 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝐽 → (𝑖 + 1) = (𝐽 + 1))
8887fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑖 = 𝐽 → (𝑆‘(𝑖 + 1)) = (𝑆‘(𝐽 + 1)))
8986, 88breq12d 4596 . . . . . . . . . . . . . . 15 (𝑖 = 𝐽 → ((𝑆𝑖) < (𝑆‘(𝑖 + 1)) ↔ (𝑆𝐽) < (𝑆‘(𝐽 + 1))))
9089rspccva 3281 . . . . . . . . . . . . . 14 ((∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
9185, 51, 90syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
9254, 82posdifd 10493 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐽) < (𝑆‘(𝐽 + 1)) ↔ 0 < ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
9391, 92mpbid 221 . . . . . . . . . . . 12 (𝜑 → 0 < ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
9451ancli 572 . . . . . . . . . . . . 13 (𝜑 → (𝜑𝐽 ∈ (0..^𝑁)))
95 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑗 ∈ (0..^𝑁) ↔ 𝐽 ∈ (0..^𝑁)))
9695anbi2d 736 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝜑𝑗 ∈ (0..^𝑁)) ↔ (𝜑𝐽 ∈ (0..^𝑁))))
97 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝐽 → (𝑗 + 1) = (𝐽 + 1))
9897fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝐽 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝐽 + 1)))
9998fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝐸‘(𝑆‘(𝑗 + 1))) = (𝐸‘(𝑆‘(𝐽 + 1))))
100 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝐽 → (𝑆𝑗) = (𝑆𝐽))
101100fveq2d 6107 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝐽 → (𝐸‘(𝑆𝑗)) = (𝐸‘(𝑆𝐽)))
102101fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝑍‘(𝐸‘(𝑆𝑗))) = (𝑍‘(𝐸‘(𝑆𝐽))))
10399, 102oveq12d 6567 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))))
10498, 100oveq12d 6567 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
105103, 104eqeq12d 2625 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → (((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
10696, 105imbi12d 333 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗))) ↔ ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))))
10711oveq2i 6560 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 · 𝑇) = (𝑘 · (𝐵𝐴))
108107oveq2i 6560 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 + (𝑘 · 𝑇)) = (𝑦 + (𝑘 · (𝐵𝐴)))
109108eleq1i 2679 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
110109rexbii 3023 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
111110rgenw 2908 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄)
112 rabbi 3097 . . . . . . . . . . . . . . . . . . . 20 (∀𝑦 ∈ (𝐶[,]𝐷)(∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄) ↔ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
113111, 112mpbi 219 . . . . . . . . . . . . . . . . . . 19 {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}
114113uneq2i 3726 . . . . . . . . . . . . . . . . . 18 ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})
115114fveq2i 6106 . . . . . . . . . . . . . . . . 17 (#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) = (#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))
116115oveq1i 6559 . . . . . . . . . . . . . . . 16 ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) = ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
11735, 116eqtri 2632 . . . . . . . . . . . . . . 15 𝑁 = ((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})) − 1)
118 isoeq5 6471 . . . . . . . . . . . . . . . . . 18 (({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}) → (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄}))))
119114, 118ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) ↔ 𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
120119iotabii 5790 . . . . . . . . . . . . . . . 16 (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
12140, 120eqtri 2632 . . . . . . . . . . . . . . 15 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · (𝐵𝐴))) ∈ ran 𝑄})))
122 eqid 2610 . . . . . . . . . . . . . . 15 ((𝑆𝑗) + (𝐵 − (𝐸‘(𝑆𝑗)))) = ((𝑆𝑗) + (𝐵 − (𝐸‘(𝑆𝑗))))
1233, 11, 2, 1, 17, 18, 25, 117, 121, 12, 13, 122fourierdlem65 39064 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝑗 + 1))) − (𝑍‘(𝐸‘(𝑆𝑗)))) = ((𝑆‘(𝑗 + 1)) − (𝑆𝑗)))
124106, 123vtoclg 3239 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
12551, 94, 124sylc 63 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
12693, 125breqtrrd 4611 . . . . . . . . . . 11 (𝜑 → 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))))
12774, 84posdifd 10493 . . . . . . . . . . 11 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))) ↔ 0 < ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽))))))
128126, 127mpbird 246 . . . . . . . . . 10 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) < (𝐸‘(𝑆‘(𝐽 + 1))))
129 id 22 . . . . . . . . . . 11 (𝜑𝜑)
130102, 99oveq12d 6567 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) = ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))))
131100fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → (𝐼‘(𝑆𝑗)) = (𝐼‘(𝑆𝐽)))
132131fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑄‘(𝐼‘(𝑆𝑗))) = (𝑄‘(𝐼‘(𝑆𝐽))))
133131oveq1d 6564 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝐽 → ((𝐼‘(𝑆𝑗)) + 1) = ((𝐼‘(𝑆𝐽)) + 1))
134133fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐽 → (𝑄‘((𝐼‘(𝑆𝑗)) + 1)) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
135132, 134oveq12d 6567 . . . . . . . . . . . . . . 15 (𝑗 = 𝐽 → ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))) = ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
136130, 135sseq12d 3597 . . . . . . . . . . . . . 14 (𝑗 = 𝐽 → (((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))) ↔ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
13796, 136imbi12d 333 . . . . . . . . . . . . 13 (𝑗 = 𝐽 → (((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1)))) ↔ ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))))
138 eqid 2610 . . . . . . . . . . . . . 14 ((𝑆𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = ((𝑆𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))
13911, 3, 2, 1, 17, 20, 24, 25, 30, 35, 40, 12, 13, 138, 14fourierdlem79 39078 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝑗)))(,)(𝑄‘((𝐼‘(𝑆𝑗)) + 1))))
140137, 139vtoclg 3239 . . . . . . . . . . . 12 (𝐽 ∈ (0..^𝑁) → ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
141140anabsi7 856 . . . . . . . . . . 11 ((𝜑𝐽 ∈ (0..^𝑁)) → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
142129, 51, 141syl2anc 691 . . . . . . . . . 10 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
14357, 62, 74, 84, 128, 142fourierdlem10 39010 . . . . . . . . 9 (𝜑 → ((𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))) ∧ (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
144143simpld 474 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))))
145144adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑄‘(𝐼‘(𝑆𝐽))) ≤ (𝑍‘(𝐸‘(𝑆𝐽))))
146 neqne 2790 . . . . . . . 8 (¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))) → (𝑍‘(𝐸‘(𝑆𝐽))) ≠ (𝑄‘(𝐼‘(𝑆𝐽))))
147146adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑍‘(𝐸‘(𝑆𝐽))) ≠ (𝑄‘(𝐼‘(𝑆𝐽))))
14876, 75, 145, 147leneltd 10070 . . . . . 6 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑍‘(𝐸‘(𝑆𝐽))))
149143simprd 478 . . . . . . . 8 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
15074, 84, 62, 128, 149ltletrd 10076 . . . . . . 7 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
151150adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑍‘(𝐸‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
15259, 64, 75, 148, 151eliood 38567 . . . . 5 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
153 fvres 6117 . . . . 5 ((𝑍‘(𝐸‘(𝑆𝐽))) ∈ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽)))) = (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽)))))
154152, 153syl 17 . . . 4 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽)))) = (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽)))))
155154eqcomd 2616 . . 3 ((𝜑 ∧ ¬ (𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽)))) → (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽)))))
156155ifeq2da 4067 . 2 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽))))) = if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))))
157 fourierdlem89.f . . . . . 6 (𝜑𝐹:ℝ⟶ℂ)
158 fdm 5964 . . . . . . . 8 (𝐹:ℝ⟶ℂ → dom 𝐹 = ℝ)
159157, 158syl 17 . . . . . . 7 (𝜑 → dom 𝐹 = ℝ)
160159feq2d 5944 . . . . . 6 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:ℝ⟶ℂ))
161157, 160mpbird 246 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℂ)
162 ioosscn 38563 . . . . . 6 ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ
163162a1i 11 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℂ)
164 ioossre 12106 . . . . . 6 ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ ℝ
165164, 159syl5sseqr 3617 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) ⊆ dom 𝐹)
166 fourierdlem89.u . . . . . . 7 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))
16782, 84resubcld 10337 . . . . . . 7 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ)
168166, 167syl5eqel 2692 . . . . . 6 (𝜑𝑈 ∈ ℝ)
169168recnd 9947 . . . . 5 (𝜑𝑈 ∈ ℂ)
170 eqid 2610 . . . . 5 {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}
17174, 84, 168iooshift 38595 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)})
172 ioossre 12106 . . . . . . 7 (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ ℝ
173172, 159syl5sseqr 3617 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ⊆ dom 𝐹)
174171, 173eqsstr3d 3603 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} ⊆ dom 𝐹)
175 elioore 12076 . . . . . 6 (𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑦 ∈ ℝ)
17667, 66resubcld 10337 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐴) ∈ ℝ)
17711, 176syl5eqel 2692 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ ℝ)
178177recnd 9947 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℂ)
17966, 67posdifd 10493 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
18069, 179mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝐵𝐴))
181180, 11syl6breqr 4625 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑇)
182181gt0ne0d 10471 . . . . . . . . . . . 12 (𝜑𝑇 ≠ 0)
183169, 178, 182divcan1d 10681 . . . . . . . . . . 11 (𝜑 → ((𝑈 / 𝑇) · 𝑇) = 𝑈)
184183eqcomd 2616 . . . . . . . . . 10 (𝜑𝑈 = ((𝑈 / 𝑇) · 𝑇))
185184oveq2d 6565 . . . . . . . . 9 (𝜑 → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇)))
186185adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑈) = (𝑦 + ((𝑈 / 𝑇) · 𝑇)))
187186fveq2d 6107 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))))
188157adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℝ⟶ℂ)
189177adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℝ)
19084recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
19182recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ)
192190, 191negsubdi2d 10287 . . . . . . . . . . . . 13 (𝜑 → -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
193192eqcomd 2616 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) = -((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))))
194193oveq1d 6564 . . . . . . . . . . 11 (𝜑 → (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
195166oveq1i 6559 . . . . . . . . . . . 12 (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇)
196195a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑈 / 𝑇) = (((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) / 𝑇))
19712a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
198 id 22 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1)))
199 oveq2 6557 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵𝑥) = (𝐵 − (𝑆‘(𝐽 + 1))))
200199oveq1d 6564 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))
201200fveq2d 6107 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
202201oveq1d 6564 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
203198, 202oveq12d 6567 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
204203adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
20567, 82resubcld 10337 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ)
206205, 177, 182redivcld 10732 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ)
207206flcld 12461 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ)
208207zred 11358 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ)
209208, 177remulcld 9949 . . . . . . . . . . . . . . . . 17 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ)
21082, 209readdcld 9948 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ)
211197, 204, 82, 210fvmptd 6197 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
212211oveq1d 6564 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))))
213208recnd 9947 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℂ)
214213, 178mulcld 9939 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℂ)
215191, 214pncan2d 10273 . . . . . . . . . . . . . 14 (𝜑 → (((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
216212, 215eqtrd 2644 . . . . . . . . . . . . 13 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
217216, 214eqeltrd 2688 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℂ)
218217, 178, 182divnegd 10693 . . . . . . . . . . 11 (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (-((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
219194, 196, 2183eqtr4d 2654 . . . . . . . . . 10 (𝜑 → (𝑈 / 𝑇) = -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇))
220216oveq1d 6564 . . . . . . . . . . . . 13 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇))
221213, 178, 182divcan4d 10686 . . . . . . . . . . . . 13 (𝜑 → (((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
222220, 221eqtrd 2644 . . . . . . . . . . . 12 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
223222, 207eqeltrd 2688 . . . . . . . . . . 11 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ)
224223znegcld 11360 . . . . . . . . . 10 (𝜑 → -(((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℤ)
225219, 224eqeltrd 2688 . . . . . . . . 9 (𝜑 → (𝑈 / 𝑇) ∈ ℤ)
226225adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑈 / 𝑇) ∈ ℤ)
227 simpr 476 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
228 fourierdlem89.per . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
229228adantlr 747 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
230188, 189, 226, 227, 229fperiodmul 38459 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + ((𝑈 / 𝑇) · 𝑇))) = (𝐹𝑦))
231187, 230eqtrd 2644 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝐹‘(𝑦 + 𝑈)) = (𝐹𝑦))
232175, 231sylan2 490 . . . . 5 ((𝜑𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) → (𝐹‘(𝑦 + 𝑈)) = (𝐹𝑦))
2336simprrd 793 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
234 fveq2 6103 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑄𝑖) = (𝑄‘(𝐼‘(𝑆𝐽))))
235 oveq1 6556 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑖 + 1) = ((𝐼‘(𝑆𝐽)) + 1))
236235fveq2d 6107 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
237234, 236breq12d 4596 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
238237rspccva 3281 . . . . . . . 8 ((∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)) ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
239233, 55, 238syl2anc 691 . . . . . . 7 (𝜑 → (𝑄‘(𝐼‘(𝑆𝐽))) < (𝑄‘((𝐼‘(𝑆𝐽)) + 1)))
24055ancli 572 . . . . . . . 8 (𝜑 → (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)))
241 eleq1 2676 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑖 ∈ (0..^𝑀) ↔ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)))
242241anbi2d 736 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))))
243234, 236oveq12d 6567 . . . . . . . . . . . 12 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
244243reseq2d 5317 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))))
245243oveq1d 6564 . . . . . . . . . . 11 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) = (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))
246244, 245eleq12d 2682 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) ↔ (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ)))
247242, 246imbi12d 333 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) ↔ ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))))
248 fourierdlem89.fcn . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
249247, 248vtoclg 3239 . . . . . . . 8 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ)))
25055, 240, 249sylc 63 . . . . . . 7 (𝜑 → (𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ∈ (((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))–cn→ℂ))
251 nfv 1830 . . . . . . . . . 10 𝑖(𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))
252 fourierdlem89.21 . . . . . . . . . . . . 13 𝑉 = (𝑖 ∈ (0..^𝑀) ↦ 𝑅)
253 nfmpt1 4675 . . . . . . . . . . . . 13 𝑖(𝑖 ∈ (0..^𝑀) ↦ 𝑅)
254252, 253nfcxfr 2749 . . . . . . . . . . . 12 𝑖𝑉
255 nfcv 2751 . . . . . . . . . . . 12 𝑖(𝐼‘(𝑆𝐽))
256254, 255nffv 6110 . . . . . . . . . . 11 𝑖(𝑉‘(𝐼‘(𝑆𝐽)))
257256nfel1 2765 . . . . . . . . . 10 𝑖(𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽))))
258251, 257nfim 1813 . . . . . . . . 9 𝑖((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))
259242biimpar 501 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝜑𝑖 ∈ (0..^𝑀)))
2602593adant2 1073 . . . . . . . . . . . . 13 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝜑𝑖 ∈ (0..^𝑀)))
261 fourierdlem89.limc . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
262260, 261syl 17 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
263 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑉𝑖) = (𝑉‘(𝐼‘(𝑆𝐽))))
264263eqcomd 2616 . . . . . . . . . . . . . . 15 (𝑖 = (𝐼‘(𝑆𝐽)) → (𝑉‘(𝐼‘(𝑆𝐽))) = (𝑉𝑖))
265264adantr 480 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆𝐽))) = (𝑉𝑖))
266259simprd 478 . . . . . . . . . . . . . . 15 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝑖 ∈ (0..^𝑀))
267 elex 3185 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) → 𝑅 ∈ V)
268259, 261, 2673syl 18 . . . . . . . . . . . . . . 15 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → 𝑅 ∈ V)
269252fvmpt2 6200 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ 𝑅 ∈ V) → (𝑉𝑖) = 𝑅)
270266, 268, 269syl2anc 691 . . . . . . . . . . . . . 14 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑉𝑖) = 𝑅)
271265, 270eqtrd 2644 . . . . . . . . . . . . 13 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆𝐽))) = 𝑅)
2722713adant2 1073 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆𝐽))) = 𝑅)
273244, 234oveq12d 6567 . . . . . . . . . . . . . 14 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))
274273eqcomd 2616 . . . . . . . . . . . . 13 (𝑖 = (𝐼‘(𝑆𝐽)) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
2752743ad2ant1 1075 . . . . . . . . . . . 12 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
276262, 272, 2753eltr4d 2703 . . . . . . . . . . 11 ((𝑖 = (𝐼‘(𝑆𝐽)) ∧ ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ∧ (𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀))) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))
2772763exp 1256 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))))
2782612a1i 12 . . . . . . . . . 10 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽))))) → ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))))
279277, 278impbid 201 . . . . . . . . 9 (𝑖 = (𝐼‘(𝑆𝐽)) → (((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))) ↔ ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))))
280258, 279, 261vtoclg1f 3238 . . . . . . . 8 ((𝐼‘(𝑆𝐽)) ∈ (0..^𝑀) → ((𝜑 ∧ (𝐼‘(𝑆𝐽)) ∈ (0..^𝑀)) → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽))))))
28155, 240, 280sylc 63 . . . . . . 7 (𝜑 → (𝑉‘(𝐼‘(𝑆𝐽))) ∈ ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) lim (𝑄‘(𝐼‘(𝑆𝐽)))))
282 eqid 2610 . . . . . . 7 if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) = if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽)))))
283 eqid 2610 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((𝑄‘(𝐼‘(𝑆𝐽)))[,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) = ((TopOpen‘ℂfld) ↾t ((𝑄‘(𝐼‘(𝑆𝐽)))[,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))
28457, 62, 239, 250, 281, 74, 84, 128, 142, 282, 283fourierdlem32 39032 . . . . . 6 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝑍‘(𝐸‘(𝑆𝐽)))))
285142resabs1d 5348 . . . . . . 7 (𝜑 → ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) = (𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))))
286285oveq1d 6564 . . . . . 6 (𝜑 → (((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1)))) ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝑍‘(𝐸‘(𝑆𝐽)))))
287284, 286eleqtrd 2690 . . . . 5 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) lim (𝑍‘(𝐸‘(𝑆𝐽)))))
288161, 163, 165, 169, 170, 174, 232, 287limcperiod 38695 . . . 4 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)))
289166oveq2i 6560 . . . . . . 7 ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
290289a1i 11 . . . . . 6 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))))
29117, 20iccssred 38574 . . . . . . . . . . . . 13 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
292 ax-resscn 9872 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
293291, 292syl6ss 3580 . . . . . . . . . . . 12 (𝜑 → (𝐶[,]𝐷) ⊆ ℂ)
29425, 44, 43fourierdlem15 39015 . . . . . . . . . . . . 13 (𝜑𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
295294, 53ffvelrnd 6268 . . . . . . . . . . . 12 (𝜑 → (𝑆𝐽) ∈ (𝐶[,]𝐷))
296293, 295sseldd 3569 . . . . . . . . . . 11 (𝜑 → (𝑆𝐽) ∈ ℂ)
297191, 296subcld 10271 . . . . . . . . . 10 (𝜑 → ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) ∈ ℂ)
29874recnd 9947 . . . . . . . . . 10 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) ∈ ℂ)
299190, 297, 298subsub23d 38440 . . . . . . . . 9 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (𝑍‘(𝐸‘(𝑆𝐽))) ↔ ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑍‘(𝐸‘(𝑆𝐽)))) = ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
300125, 299mpbird 246 . . . . . . . 8 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (𝑍‘(𝐸‘(𝑆𝐽))))
301300eqcomd 2616 . . . . . . 7 (𝜑 → (𝑍‘(𝐸‘(𝑆𝐽))) = ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
302301oveq1d 6564 . . . . . 6 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))))
303190, 297subcld 10271 . . . . . . . 8 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) ∈ ℂ)
304303, 191, 190addsub12d 10294 . . . . . . 7 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))))
305190, 297, 190sub32d 10303 . . . . . . . . 9 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
306190subidd 10259 . . . . . . . . . 10 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = 0)
307306oveq1d 6564 . . . . . . . . 9 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − (𝐸‘(𝑆‘(𝐽 + 1)))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))))
308 df-neg 10148 . . . . . . . . . 10 -((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) = (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽)))
309191, 296negsubdi2d 10287 . . . . . . . . . 10 (𝜑 → -((𝑆‘(𝐽 + 1)) − (𝑆𝐽)) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
310308, 309syl5eqr 2658 . . . . . . . . 9 (𝜑 → (0 − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
311305, 307, 3103eqtrd 2648 . . . . . . . 8 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1)))) = ((𝑆𝐽) − (𝑆‘(𝐽 + 1))))
312311oveq2d 6565 . . . . . . 7 (𝜑 → ((𝑆‘(𝐽 + 1)) + (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) − (𝐸‘(𝑆‘(𝐽 + 1))))) = ((𝑆‘(𝐽 + 1)) + ((𝑆𝐽) − (𝑆‘(𝐽 + 1)))))
313191, 296pncan3d 10274 . . . . . . 7 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((𝑆𝐽) − (𝑆‘(𝐽 + 1)))) = (𝑆𝐽))
314304, 312, 3133eqtrd 2648 . . . . . 6 (𝜑 → (((𝐸‘(𝑆‘(𝐽 + 1))) − ((𝑆‘(𝐽 + 1)) − (𝑆𝐽))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆𝐽))
315290, 302, 3143eqtrd 2648 . . . . 5 (𝜑 → ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈) = (𝑆𝐽))
316315oveq2d 6565 . . . 4 (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim ((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)) = ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆𝐽)))
317288, 316eleqtrd 2690 . . 3 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆𝐽)))
318166oveq2i 6560 . . . . . . . 8 ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))))
319190, 191pncan3d 10274 . . . . . . . 8 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1))))) = (𝑆‘(𝐽 + 1)))
320318, 319syl5eq 2656 . . . . . . 7 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈) = (𝑆‘(𝐽 + 1)))
321315, 320oveq12d 6567 . . . . . 6 (𝜑 → (((𝑍‘(𝐸‘(𝑆𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) = ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))))
322171, 321eqtr3d 2646 . . . . 5 (𝜑 → {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)} = ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))))
323322reseq2d 5317 . . . 4 (𝜑 → (𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) = (𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))))
324323oveq1d 6564 . . 3 (𝜑 → ((𝐹 ↾ {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ ((𝑍‘(𝐸‘(𝑆𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))𝑥 = (𝑦 + 𝑈)}) lim (𝑆𝐽)) = ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆𝐽)))
325317, 324eleqtrd 2690 . 2 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), ((𝐹 ↾ ((𝑄‘(𝐼‘(𝑆𝐽)))(,)(𝑄‘((𝐼‘(𝑆𝐽)) + 1))))‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆𝐽)))
326156, 325eqeltrd 2688 1 (𝜑 → if((𝑍‘(𝐸‘(𝑆𝐽))) = (𝑄‘(𝐼‘(𝑆𝐽))), (𝑉‘(𝐼‘(𝑆𝐽))), (𝐹‘(𝑍‘(𝐸‘(𝑆𝐽))))) ∈ ((𝐹 ↾ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1)))) lim (𝑆𝐽)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173   ∪ cun 3538   ⊆ wss 3540  ifcif 4036  {cpr 4127   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   ↾ cres 5040  ℩cio 5766  ⟶wf 5800  ‘cfv 5804   Isom wiso 5805  (class class class)co 6549   ↑𝑚 cmap 7744  supcsup 8229  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℤcz 11254  (,)cioo 12046  (,]cioc 12047  [,)cico 12048  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  ⌊cfl 12453  #chash 12979   ↾t crest 15904  TopOpenctopn 15905  ℂfldccnfld 19567  –cn→ccncf 22487   limℂ climc 23432 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-cn 20841  df-cnp 20842  df-cmp 21000  df-xms 21935  df-ms 21936  df-cncf 22489  df-limc 23436 This theorem is referenced by:  fourierdlem96  39095  fourierdlem100  39099  fourierdlem107  39106  fourierdlem109  39108
 Copyright terms: Public domain W3C validator