Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvbdfbdioolem2 Structured version   Visualization version   GIF version

Theorem dvbdfbdioolem2 38819
 Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvbdfbdioolem2.a (𝜑𝐴 ∈ ℝ)
dvbdfbdioolem2.b (𝜑𝐵 ∈ ℝ)
dvbdfbdioolem2.altb (𝜑𝐴 < 𝐵)
dvbdfbdioolem2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
dvbdfbdioolem2.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
dvbdfbdioolem2.k (𝜑𝐾 ∈ ℝ)
dvbdfbdioolem2.dvbd (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
dvbdfbdioolem2.m 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴)))
Assertion
Ref Expression
dvbdfbdioolem2 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑀)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥
Allowed substitution hint:   𝑀(𝑥)

Proof of Theorem dvbdfbdioolem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvbdfbdioolem2.f . . . . . . . 8 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
21ffvelrnda 6267 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
32recnd 9947 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
43abscld 14023 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ∈ ℝ)
5 dvbdfbdioolem2.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
65rexrd 9968 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
7 dvbdfbdioolem2.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
87rexrd 9968 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
95, 7readdcld 9948 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
109rehalfcld 11156 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
11 dvbdfbdioolem2.altb . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
12 avglt1 11147 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
135, 7, 12syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵𝐴 < ((𝐴 + 𝐵) / 2)))
1411, 13mpbid 221 . . . . . . . . . 10 (𝜑𝐴 < ((𝐴 + 𝐵) / 2))
15 avglt2 11148 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
165, 7, 15syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
1711, 16mpbid 221 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
186, 8, 10, 14, 17eliood 38567 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
191, 18ffvelrnd 6268 . . . . . . . 8 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
2019recnd 9947 . . . . . . 7 (𝜑 → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
2120abscld 14023 . . . . . 6 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
2221adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
234, 22resubcld 10337 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ∈ ℝ)
24 dvbdfbdioolem2.k . . . . . 6 (𝜑𝐾 ∈ ℝ)
2524adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐾 ∈ ℝ)
267adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
275adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
2826, 27resubcld 10337 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ∈ ℝ)
2925, 28remulcld 9949 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐾 · (𝐵𝐴)) ∈ ℝ)
3020adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
313, 30subcld 10271 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
3231abscld 14023 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ∈ ℝ)
333, 30abs2difd 14044 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))))
34 simpll 786 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝜑)
3510rexrd 9968 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ*)
3635ad2antrr 758 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ*)
378ad2antrr 758 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝐵 ∈ ℝ*)
38 elioore 12076 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ)
3938adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
4039adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ ℝ)
41 simpr 476 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) < 𝑥)
426adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
438adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
44 simpr 476 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
45 iooltub 38582 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
4642, 43, 44, 45syl3anc 1318 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
4746adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 < 𝐵)
4836, 37, 40, 41, 47eliood 38567 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵))
495adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐴 ∈ ℝ)
507adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐵 ∈ ℝ)
511adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
52 dvbdfbdioolem2.dmdv . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
5352adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
5424adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝐾 ∈ ℝ)
55 dvbdfbdioolem2.dvbd . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾)
56 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑦))
5756fveq2d 6107 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘𝑦)))
5857breq1d 4593 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾))
5958cbvralv 3147 . . . . . . . . . . 11 (∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
6055, 59sylib 207 . . . . . . . . . 10 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
6160adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
6218adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵))
63 simpr 476 . . . . . . . . 9 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → 𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵))
6449, 50, 51, 53, 54, 61, 62, 63dvbdfbdioolem1 38818 . . . . . . . 8 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → ((abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝑥 − ((𝐴 + 𝐵) / 2))) ∧ (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴))))
6564simprd 478 . . . . . . 7 ((𝜑𝑥 ∈ (((𝐴 + 𝐵) / 2)(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
6634, 48, 65syl2anc 691 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ((𝐴 + 𝐵) / 2) < 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
67 fveq2 6103 . . . . . . . . . . . . . 14 (((𝐴 + 𝐵) / 2) = 𝑥 → (𝐹‘((𝐴 + 𝐵) / 2)) = (𝐹𝑥))
6867eqcomd 2616 . . . . . . . . . . . . 13 (((𝐴 + 𝐵) / 2) = 𝑥 → (𝐹𝑥) = (𝐹‘((𝐴 + 𝐵) / 2)))
6968adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹𝑥) = (𝐹‘((𝐴 + 𝐵) / 2)))
7020adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
7169, 70eqeltrd 2688 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐹𝑥) ∈ ℂ)
7271, 69subeq0bd 10335 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2))) = 0)
7372abs00bd 13879 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = 0)
7424adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐾 ∈ ℝ)
757adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐵 ∈ ℝ)
765adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝐴 ∈ ℝ)
7775, 76resubcld 10337 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝐵𝐴) ∈ ℝ)
78 0red 9920 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
79 ioossre 12106 . . . . . . . . . . . . . . . 16 (𝐴(,)𝐵) ⊆ ℝ
80 dvfre 23520 . . . . . . . . . . . . . . . 16 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
811, 79, 80sylancl 693 . . . . . . . . . . . . . . 15 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
8218, 52eleqtrrd 2691 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ dom (ℝ D 𝐹))
8381, 82ffvelrnd 6268 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℝ)
8483recnd 9947 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ)
8584abscld 14023 . . . . . . . . . . . 12 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ)
8684absge0d 14031 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
87 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑥 = ((𝐴 + 𝐵) / 2) → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)))
8887fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑥 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑥)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))))
8988breq1d 4593 . . . . . . . . . . . . . 14 (𝑥 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ↔ (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾))
9089rspccva 3281 . . . . . . . . . . . . 13 ((∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝐾 ∧ ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾)
9155, 18, 90syl2anc 691 . . . . . . . . . . . 12 (𝜑 → (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ 𝐾)
9278, 85, 24, 86, 91letrd 10073 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐾)
9392adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ 𝐾)
947, 5resubcld 10337 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐴) ∈ ℝ)
955, 7posdifd 10493 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
9611, 95mpbid 221 . . . . . . . . . . . 12 (𝜑 → 0 < (𝐵𝐴))
9778, 94, 96ltled 10064 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝐵𝐴))
9897adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ (𝐵𝐴))
9974, 77, 93, 98mulge0d 10483 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → 0 ≤ (𝐾 · (𝐵𝐴)))
10073, 99eqbrtrd 4605 . . . . . . . 8 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
101100ad4ant14 1285 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
102 simpll 786 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → (𝜑𝑥 ∈ (𝐴(,)𝐵)))
10339ad2antrr 758 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 ∈ ℝ)
10410ad3antrrr 762 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
10539adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ∈ ℝ)
10610ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
107 simpr 476 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → ¬ ((𝐴 + 𝐵) / 2) < 𝑥)
108105, 106, 107nltled 10066 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → 𝑥 ≤ ((𝐴 + 𝐵) / 2))
109108adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 ≤ ((𝐴 + 𝐵) / 2))
110 neqne 2790 . . . . . . . . . 10 (¬ ((𝐴 + 𝐵) / 2) = 𝑥 → ((𝐴 + 𝐵) / 2) ≠ 𝑥)
111110adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → ((𝐴 + 𝐵) / 2) ≠ 𝑥)
112103, 104, 109, 111leneltd 10070 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → 𝑥 < ((𝐴 + 𝐵) / 2))
1133, 30abssubd 14040 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))))
114113adantr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))))
1155ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐴 ∈ ℝ)
1167ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐵 ∈ ℝ)
1171ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
11852ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
11924ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐾 ∈ ℝ)
12060ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ 𝐾)
12144adantr 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 ∈ (𝐴(,)𝐵))
12238rexrd 9968 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ ℝ*)
123122ad2antlr 759 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 ∈ ℝ*)
1248ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝐵 ∈ ℝ*)
12510ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) ∈ ℝ)
126 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → 𝑥 < ((𝐴 + 𝐵) / 2))
12717ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) < 𝐵)
128123, 124, 125, 126, 127eliood 38567 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((𝐴 + 𝐵) / 2) ∈ (𝑥(,)𝐵))
129115, 116, 117, 118, 119, 120, 121, 128dvbdfbdioolem1 38818 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → ((abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (((𝐴 + 𝐵) / 2) − 𝑥)) ∧ (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (𝐵𝐴))))
130129simprd 478 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹‘((𝐴 + 𝐵) / 2)) − (𝐹𝑥))) ≤ (𝐾 · (𝐵𝐴)))
131114, 130eqbrtrd 4605 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑥 < ((𝐴 + 𝐵) / 2)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
132102, 112, 131syl2anc 691 . . . . . . 7 ((((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) ∧ ¬ ((𝐴 + 𝐵) / 2) = 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
133101, 132pm2.61dan 828 . . . . . 6 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑥) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13466, 133pm2.61dan 828 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((𝐹𝑥) − (𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13523, 32, 29, 33, 134letrd 10073 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ (𝐾 · (𝐵𝐴)))
13623, 29, 22, 135leadd1dd 10520 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) ≤ ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
1374recnd 9947 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ∈ ℂ)
13822recnd 9947 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
139137, 138npcand 10275 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) = (abs‘(𝐹𝑥)))
140139eqcomd 2616 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) = (((abs‘(𝐹𝑥)) − (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
141 dvbdfbdioolem2.m . . . . 5 𝑀 = ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴)))
14221recnd 9947 . . . . . 6 (𝜑 → (abs‘(𝐹‘((𝐴 + 𝐵) / 2))) ∈ ℂ)
14324recnd 9947 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
1447recnd 9947 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1455recnd 9947 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
146144, 145subcld 10271 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
147143, 146mulcld 9939 . . . . . 6 (𝜑 → (𝐾 · (𝐵𝐴)) ∈ ℂ)
148142, 147addcomd 10117 . . . . 5 (𝜑 → ((abs‘(𝐹‘((𝐴 + 𝐵) / 2))) + (𝐾 · (𝐵𝐴))) = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
149141, 148syl5eq 2656 . . . 4 (𝜑𝑀 = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
150149adantr 480 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑀 = ((𝐾 · (𝐵𝐴)) + (abs‘(𝐹‘((𝐴 + 𝐵) / 2)))))
151136, 140, 1503brtr4d 4615 . 2 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑥)) ≤ 𝑀)
152151ralrimiva 2949 1 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑥)) ≤ 𝑀)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896   ⊆ wss 3540   class class class wbr 4583  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815   + caddc 9818   · cmul 9820  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145   / cdiv 10563  2c2 10947  (,)cioo 12046  abscabs 13822   D cdv 23433 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by:  dvbdfbdioo  38820
 Copyright terms: Public domain W3C validator