Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem32 Structured version   Visualization version   GIF version

Theorem fourierdlem32 39032
Description: Limit of a continuous function on an open subinterval. Lower bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem32.a (𝜑𝐴 ∈ ℝ)
fourierdlem32.b (𝜑𝐵 ∈ ℝ)
fourierdlem32.altb (𝜑𝐴 < 𝐵)
fourierdlem32.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
fourierdlem32.l (𝜑𝑅 ∈ (𝐹 lim 𝐴))
fourierdlem32.c (𝜑𝐶 ∈ ℝ)
fourierdlem32.d (𝜑𝐷 ∈ ℝ)
fourierdlem32.cltd (𝜑𝐶 < 𝐷)
fourierdlem32.ss (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
fourierdlem32.y 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹𝐶))
fourierdlem32.j 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
Assertion
Ref Expression
fourierdlem32 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))

Proof of Theorem fourierdlem32
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem32.l . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
21adantr 480 . . 3 ((𝜑𝐶 = 𝐴) → 𝑅 ∈ (𝐹 lim 𝐴))
3 fourierdlem32.y . . . . 5 𝑌 = if(𝐶 = 𝐴, 𝑅, (𝐹𝐶))
4 iftrue 4042 . . . . 5 (𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹𝐶)) = 𝑅)
53, 4syl5req 2657 . . . 4 (𝐶 = 𝐴𝑅 = 𝑌)
65adantl 481 . . 3 ((𝜑𝐶 = 𝐴) → 𝑅 = 𝑌)
7 oveq2 6557 . . . . 5 (𝐶 = 𝐴 → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴))
87adantl 481 . . . 4 ((𝜑𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴))
9 fourierdlem32.f . . . . . . 7 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
10 cncff 22504 . . . . . . 7 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
119, 10syl 17 . . . . . 6 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
1211adantr 480 . . . . 5 ((𝜑𝐶 = 𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
13 fourierdlem32.ss . . . . . 6 (𝜑 → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
1413adantr 480 . . . . 5 ((𝜑𝐶 = 𝐴) → (𝐶(,)𝐷) ⊆ (𝐴(,)𝐵))
15 ioosscn 38563 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
1615a1i 11 . . . . 5 ((𝜑𝐶 = 𝐴) → (𝐴(,)𝐵) ⊆ ℂ)
17 eqid 2610 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2610 . . . . 5 ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴}))
19 fourierdlem32.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ)
2019leidd 10473 . . . . . . . . 9 (𝜑𝐶𝐶)
21 fourierdlem32.cltd . . . . . . . . 9 (𝜑𝐶 < 𝐷)
22 fourierdlem32.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
2322rexrd 9968 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ*)
24 elico2 12108 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ*) → (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶𝐶𝐶 < 𝐷)))
2519, 23, 24syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐶 ∈ (𝐶[,)𝐷) ↔ (𝐶 ∈ ℝ ∧ 𝐶𝐶𝐶 < 𝐷)))
2619, 20, 21, 25mpbir3and 1238 . . . . . . . 8 (𝜑𝐶 ∈ (𝐶[,)𝐷))
2726adantr 480 . . . . . . 7 ((𝜑𝐶 = 𝐴) → 𝐶 ∈ (𝐶[,)𝐷))
28 fourierdlem32.j . . . . . . . . 9 𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵))
2917cnfldtop 22397 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ Top
30 ovex 6577 . . . . . . . . . . 11 (𝐴[,)𝐵) ∈ V
3130a1i 11 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → (𝐴[,)𝐵) ∈ V)
32 resttop 20774 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ∈ V) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top)
3329, 31, 32sylancr 694 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)) ∈ Top)
3428, 33syl5eqel 2692 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → 𝐽 ∈ Top)
35 mnfxr 9975 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → -∞ ∈ ℝ*)
3723adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈ ℝ*)
38 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐷))
39 fourierdlem32.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℝ)
4039adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐴 ∈ ℝ)
41 elico2 12108 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
4240, 37, 41syl2anc 691 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
4338, 42mpbid 221 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷))
4443simp1d 1066 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ℝ)
4544mnfltd 11834 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → -∞ < 𝑥)
4643simp3d 1068 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐷)
4736, 37, 44, 45, 46eliood 38567 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (-∞(,)𝐷))
4843simp2d 1067 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐴𝑥)
4922adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷 ∈ ℝ)
50 fourierdlem32.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
5150adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈ ℝ)
5239, 50, 19, 22, 21, 13fourierdlem10 39010 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴𝐶𝐷𝐵))
5352simprd 478 . . . . . . . . . . . . . . . . 17 (𝜑𝐷𝐵)
5453adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐷𝐵)
5544, 49, 51, 46, 54ltletrd 10076 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 < 𝐵)
5650rexrd 9968 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ*)
5756adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝐵 ∈ ℝ*)
58 elico2 12108 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
5940, 57, 58syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
6044, 48, 55, 59mpbir3and 1238 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ (𝐴[,)𝐵))
6147, 60elind 3760 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,)𝐷)) → 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)))
62 elinel1 3761 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (-∞(,)𝐷))
63 elioore 12076 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (-∞(,)𝐷) → 𝑥 ∈ ℝ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
6564adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ ℝ)
66 elinel2 3762 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,)𝐵))
6766adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐵))
6839adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ)
6956adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
7068, 69, 58syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
7167, 70mpbid 221 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵))
7271simp2d 1067 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐴𝑥)
7362adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (-∞(,)𝐷))
7423adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝐷 ∈ ℝ*)
75 elioo2 12087 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝐷 ∈ ℝ*) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷)))
7635, 74, 75sylancr 694 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (-∞(,)𝐷) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷)))
7773, 76mpbid 221 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 < 𝐷))
7877simp3d 1068 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 < 𝐷)
7968, 74, 41syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → (𝑥 ∈ (𝐴[,)𝐷) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐷)))
8065, 72, 78, 79mpbir3and 1238 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐷))
8161, 80impbida 873 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐴[,)𝐷) ↔ 𝑥 ∈ ((-∞(,)𝐷) ∩ (𝐴[,)𝐵))))
8281eqrdv 2608 . . . . . . . . . . 11 (𝜑 → (𝐴[,)𝐷) = ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)))
83 retop 22375 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
8483a1i 11 . . . . . . . . . . . 12 (𝜑 → (topGen‘ran (,)) ∈ Top)
8530a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴[,)𝐵) ∈ V)
86 iooretop 22379 . . . . . . . . . . . . 13 (-∞(,)𝐷) ∈ (topGen‘ran (,))
8786a1i 11 . . . . . . . . . . . 12 (𝜑 → (-∞(,)𝐷) ∈ (topGen‘ran (,)))
88 elrestr 15912 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,)𝐵) ∈ V ∧ (-∞(,)𝐷) ∈ (topGen‘ran (,))) → ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
8984, 85, 87, 88syl3anc 1318 . . . . . . . . . . 11 (𝜑 → ((-∞(,)𝐷) ∩ (𝐴[,)𝐵)) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
9082, 89eqeltrd 2688 . . . . . . . . . 10 (𝜑 → (𝐴[,)𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
9190adantr 480 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → (𝐴[,)𝐷) ∈ ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
92 simpr 476 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → 𝐶 = 𝐴)
9392oveq1d 6564 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → (𝐶[,)𝐷) = (𝐴[,)𝐷))
9428a1i 11 . . . . . . . . . . 11 (𝜑𝐽 = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
9529a1i 11 . . . . . . . . . . . 12 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
96 icossre 12125 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
9739, 56, 96syl2anc 691 . . . . . . . . . . . 12 (𝜑 → (𝐴[,)𝐵) ⊆ ℝ)
98 reex 9906 . . . . . . . . . . . . 13 ℝ ∈ V
9998a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ∈ V)
100 restabs 20779 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,)𝐵) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
10195, 97, 99, 100syl3anc 1318 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
10217tgioo2 22414 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
103102eqcomi 2619 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t ℝ) = (topGen‘ran (,))
104103oveq1i 6559 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵))
105104a1i 11 . . . . . . . . . . 11 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (𝐴[,)𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
10694, 101, 1053eqtr2d 2650 . . . . . . . . . 10 (𝜑𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
107106adantr 480 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → 𝐽 = ((topGen‘ran (,)) ↾t (𝐴[,)𝐵)))
10891, 93, 1073eltr4d 2703 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → (𝐶[,)𝐷) ∈ 𝐽)
109 isopn3i 20696 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐶[,)𝐷) ∈ 𝐽) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷))
11034, 108, 109syl2anc 691 . . . . . . 7 ((𝜑𝐶 = 𝐴) → ((int‘𝐽)‘(𝐶[,)𝐷)) = (𝐶[,)𝐷))
11127, 110eleqtrrd 2691 . . . . . 6 ((𝜑𝐶 = 𝐴) → 𝐶 ∈ ((int‘𝐽)‘(𝐶[,)𝐷)))
112 id 22 . . . . . . . 8 (𝐶 = 𝐴𝐶 = 𝐴)
113112eqcomd 2616 . . . . . . 7 (𝐶 = 𝐴𝐴 = 𝐶)
114113adantl 481 . . . . . 6 ((𝜑𝐶 = 𝐴) → 𝐴 = 𝐶)
115 uncom 3719 . . . . . . . . . . . 12 ((𝐴(,)𝐵) ∪ {𝐴}) = ({𝐴} ∪ (𝐴(,)𝐵))
11639rexrd 9968 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℝ*)
117 fourierdlem32.altb . . . . . . . . . . . . 13 (𝜑𝐴 < 𝐵)
118 snunioo 12169 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
119116, 56, 117, 118syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → ({𝐴} ∪ (𝐴(,)𝐵)) = (𝐴[,)𝐵))
120115, 119syl5eq 2656 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
121120adantr 480 . . . . . . . . . 10 ((𝜑𝐶 = 𝐴) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
122121oveq2d 6565 . . . . . . . . 9 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = ((TopOpen‘ℂfld) ↾t (𝐴[,)𝐵)))
123122, 28syl6eqr 2662 . . . . . . . 8 ((𝜑𝐶 = 𝐴) → ((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})) = 𝐽)
124123fveq2d 6107 . . . . . . 7 ((𝜑𝐶 = 𝐴) → (int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴}))) = (int‘𝐽))
125 uncom 3719 . . . . . . . . 9 ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐴} ∪ (𝐶(,)𝐷))
126 sneq 4135 . . . . . . . . . . 11 (𝐶 = 𝐴 → {𝐶} = {𝐴})
127126eqcomd 2616 . . . . . . . . . 10 (𝐶 = 𝐴 → {𝐴} = {𝐶})
128127uneq1d 3728 . . . . . . . . 9 (𝐶 = 𝐴 → ({𝐴} ∪ (𝐶(,)𝐷)) = ({𝐶} ∪ (𝐶(,)𝐷)))
129125, 128syl5eq 2656 . . . . . . . 8 (𝐶 = 𝐴 → ((𝐶(,)𝐷) ∪ {𝐴}) = ({𝐶} ∪ (𝐶(,)𝐷)))
13019rexrd 9968 . . . . . . . . 9 (𝜑𝐶 ∈ ℝ*)
131 snunioo 12169 . . . . . . . . 9 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶 < 𝐷) → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷))
132130, 23, 21, 131syl3anc 1318 . . . . . . . 8 (𝜑 → ({𝐶} ∪ (𝐶(,)𝐷)) = (𝐶[,)𝐷))
133129, 132sylan9eqr 2666 . . . . . . 7 ((𝜑𝐶 = 𝐴) → ((𝐶(,)𝐷) ∪ {𝐴}) = (𝐶[,)𝐷))
134124, 133fveq12d 6109 . . . . . 6 ((𝜑𝐶 = 𝐴) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴})) = ((int‘𝐽)‘(𝐶[,)𝐷)))
135111, 114, 1343eltr4d 2703 . . . . 5 ((𝜑𝐶 = 𝐴) → 𝐴 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴(,)𝐵) ∪ {𝐴})))‘((𝐶(,)𝐷) ∪ {𝐴})))
13612, 14, 16, 17, 18, 135limcres 23456 . . . 4 ((𝜑𝐶 = 𝐴) → ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐴) = (𝐹 lim 𝐴))
1378, 136eqtr2d 2645 . . 3 ((𝜑𝐶 = 𝐴) → (𝐹 lim 𝐴) = ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
1382, 6, 1373eltr3d 2702 . 2 ((𝜑𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
139 limcresi 23455 . . 3 (𝐹 lim 𝐶) ⊆ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶)
140 iffalse 4045 . . . . . 6 𝐶 = 𝐴 → if(𝐶 = 𝐴, 𝑅, (𝐹𝐶)) = (𝐹𝐶))
1413, 140syl5eq 2656 . . . . 5 𝐶 = 𝐴𝑌 = (𝐹𝐶))
142141adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 = (𝐹𝐶))
143 ssid 3587 . . . . . . . . . . . . 13 ℂ ⊆ ℂ
144143a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
145 eqid 2610 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
146 unicntop 38230 . . . . . . . . . . . . . . . 16 ℂ = (TopOpen‘ℂfld)
147146restid 15917 . . . . . . . . . . . . . . 15 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
14829, 147ax-mp 5 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
149148eqcomi 2619 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
15017, 145, 149cncfcn 22520 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
15115, 144, 150sylancr 694 . . . . . . . . . . 11 (𝜑 → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
1529, 151eleqtrd 2690 . . . . . . . . . 10 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
15317cnfldtopon 22396 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
154 resttopon 20775 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
155153, 15, 154mp2an 704 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))
156 cncnp 20894 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))))
157155, 153, 156mp2an 704 . . . . . . . . . 10 (𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
158152, 157sylib 207 . . . . . . . . 9 (𝜑 → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥)))
159158simprd 478 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
160159adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → ∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥))
161116adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈ ℝ*)
16256adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐵 ∈ ℝ*)
16319adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ ℝ)
16439adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 ∈ ℝ)
16552simpld 474 . . . . . . . . . 10 (𝜑𝐴𝐶)
166165adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴𝐶)
167112eqcoms 2618 . . . . . . . . . . . 12 (𝐴 = 𝐶𝐶 = 𝐴)
168167necon3bi 2808 . . . . . . . . . . 11 𝐶 = 𝐴𝐴𝐶)
169168adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴𝐶)
170169necomd 2837 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶𝐴)
171164, 163, 166, 170leneltd 10070 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐴 < 𝐶)
17219, 22, 50, 21, 53ltletrd 10076 . . . . . . . . 9 (𝜑𝐶 < 𝐵)
173172adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 < 𝐵)
174161, 162, 163, 171, 173eliood 38567 . . . . . . 7 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴(,)𝐵))
175 fveq2 6103 . . . . . . . . 9 (𝑥 = 𝐶 → ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) = ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
176175eleq2d 2673 . . . . . . . 8 (𝑥 = 𝐶 → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ↔ 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶)))
177176rspccva 3281 . . . . . . 7 ((∀𝑥 ∈ (𝐴(,)𝐵)𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑥) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
178160, 174, 177syl2anc 691 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶))
17917, 145cnplimc 23457 . . . . . . 7 (((𝐴(,)𝐵) ⊆ ℂ ∧ 𝐶 ∈ (𝐴(,)𝐵)) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶))))
18015, 174, 179sylancr 694 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝐶) ↔ (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶))))
181178, 180mpbid 221 . . . . 5 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ∧ (𝐹𝐶) ∈ (𝐹 lim 𝐶)))
182181simprd 478 . . . 4 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → (𝐹𝐶) ∈ (𝐹 lim 𝐶))
183142, 182eqeltrd 2688 . . 3 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ (𝐹 lim 𝐶))
184139, 183sseldi 3566 . 2 ((𝜑 ∧ ¬ 𝐶 = 𝐴) → 𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
185138, 184pm2.61dan 828 1 (𝜑𝑌 ∈ ((𝐹 ↾ (𝐶(,)𝐷)) lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cun 3538  cin 3539  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583  ran crn 5039  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  (,)cioo 12046  [,)cico 12048  t crest 15904  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567  Topctop 20517  TopOnctopon 20518  intcnt 20631   Cn ccn 20838   CnP ccnp 20839  cnccncf 22487   lim climc 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-ntr 20634  df-cn 20841  df-cnp 20842  df-xms 21935  df-ms 21936  df-cncf 22489  df-limc 23436
This theorem is referenced by:  fourierdlem48  39047  fourierdlem76  39075  fourierdlem89  39088
  Copyright terms: Public domain W3C validator