Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoopn Structured version   Visualization version   GIF version

Theorem icoopn 38598
 Description: A left closed right open interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
icoopn.a (𝜑𝐴 ∈ ℝ)
icoopn.c (𝜑𝐶 ∈ ℝ*)
icoopn.b (𝜑𝐵 ∈ ℝ*)
icoopn.k 𝐾 = (topGen‘ran (,))
icoopn.j 𝐽 = (𝐾t (𝐴[,)𝐵))
icoopn.cleb (𝜑𝐶𝐵)
Assertion
Ref Expression
icoopn (𝜑 → (𝐴[,)𝐶) ∈ 𝐽)

Proof of Theorem icoopn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icoopn.k . . . . 5 𝐾 = (topGen‘ran (,))
2 retop 22375 . . . . 5 (topGen‘ran (,)) ∈ Top
31, 2eqeltri 2684 . . . 4 𝐾 ∈ Top
43a1i 11 . . 3 (𝜑𝐾 ∈ Top)
5 ovex 6577 . . . 4 (𝐴[,)𝐵) ∈ V
65a1i 11 . . 3 (𝜑 → (𝐴[,)𝐵) ∈ V)
7 iooretop 22379 . . . . 5 (-∞(,)𝐶) ∈ (topGen‘ran (,))
87, 1eleqtrri 2687 . . . 4 (-∞(,)𝐶) ∈ 𝐾
98a1i 11 . . 3 (𝜑 → (-∞(,)𝐶) ∈ 𝐾)
10 elrestr 15912 . . 3 ((𝐾 ∈ Top ∧ (𝐴[,)𝐵) ∈ V ∧ (-∞(,)𝐶) ∈ 𝐾) → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ∈ (𝐾t (𝐴[,)𝐵)))
114, 6, 9, 10syl3anc 1318 . 2 (𝜑 → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ∈ (𝐾t (𝐴[,)𝐵)))
12 icoopn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
1312rexrd 9968 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
1413adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ*)
15 icoopn.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
1615adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐶 ∈ ℝ*)
17 elinel1 3761 . . . . . . . 8 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (-∞(,)𝐶))
18 elioore 12076 . . . . . . . 8 (𝑥 ∈ (-∞(,)𝐶) → 𝑥 ∈ ℝ)
1917, 18syl 17 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
2019rexrd 9968 . . . . . 6 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ*)
2120adantl 481 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ ℝ*)
22 icoopn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
2322adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
24 elinel2 3762 . . . . . . 7 (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,)𝐵))
2524adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐵))
26 icogelb 12096 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → 𝐴𝑥)
2714, 23, 25, 26syl3anc 1318 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝐴𝑥)
28 mnfxr 9975 . . . . . . 7 -∞ ∈ ℝ*
2928a1i 11 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → -∞ ∈ ℝ*)
3017adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (-∞(,)𝐶))
31 iooltub 38582 . . . . . 6 ((-∞ ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (-∞(,)𝐶)) → 𝑥 < 𝐶)
3229, 16, 30, 31syl3anc 1318 . . . . 5 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 < 𝐶)
3314, 16, 21, 27, 32elicod 12095 . . . 4 ((𝜑𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵))) → 𝑥 ∈ (𝐴[,)𝐶))
3428a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → -∞ ∈ ℝ*)
3515adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐶 ∈ ℝ*)
36 icossre 12125 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ*) → (𝐴[,)𝐶) ⊆ ℝ)
3712, 15, 36syl2anc 691 . . . . . . 7 (𝜑 → (𝐴[,)𝐶) ⊆ ℝ)
3837sselda 3568 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ℝ)
3938mnfltd 11834 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → -∞ < 𝑥)
4013adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐴 ∈ ℝ*)
41 simpr 476 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (𝐴[,)𝐶))
42 icoltub 38579 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐶)
4340, 35, 41, 42syl3anc 1318 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐶)
4434, 35, 38, 39, 43eliood 38567 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (-∞(,)𝐶))
4522adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐵 ∈ ℝ*)
4638rexrd 9968 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ℝ*)
47 icogelb 12096 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐶)) → 𝐴𝑥)
4840, 35, 41, 47syl3anc 1318 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐴𝑥)
49 icoopn.cleb . . . . . . . 8 (𝜑𝐶𝐵)
5049adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝐶𝐵)
5146, 35, 45, 43, 50xrltletrd 11868 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 < 𝐵)
5240, 45, 46, 48, 51elicod 12095 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ (𝐴[,)𝐵))
5344, 52elind 3760 . . . 4 ((𝜑𝑥 ∈ (𝐴[,)𝐶)) → 𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)))
5433, 53impbida 873 . . 3 (𝜑 → (𝑥 ∈ ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) ↔ 𝑥 ∈ (𝐴[,)𝐶)))
5554eqrdv 2608 . 2 (𝜑 → ((-∞(,)𝐶) ∩ (𝐴[,)𝐵)) = (𝐴[,)𝐶))
56 icoopn.j . . . 4 𝐽 = (𝐾t (𝐴[,)𝐵))
5756eqcomi 2619 . . 3 (𝐾t (𝐴[,)𝐵)) = 𝐽
5857a1i 11 . 2 (𝜑 → (𝐾t (𝐴[,)𝐵)) = 𝐽)
5911, 55, 583eltr3d 2702 1 (𝜑 → (𝐴[,)𝐶) ∈ 𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540   class class class wbr 4583  ran crn 5039  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  -∞cmnf 9951  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  (,)cioo 12046  [,)cico 12048   ↾t crest 15904  topGenctg 15921  Topctop 20517 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-ioo 12050  df-ico 12052  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522 This theorem is referenced by:  fouriersw  39124
 Copyright terms: Public domain W3C validator