Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem93 Structured version   Visualization version   GIF version

Theorem fourierdlem93 39092
Description: Integral by substitution (the domain is shifted by 𝑋) for a piecewise continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem93.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem93.2 𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋))
fourierdlem93.3 (𝜑𝑀 ∈ ℕ)
fourierdlem93.4 (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem93.5 (𝜑𝑋 ∈ ℝ)
fourierdlem93.6 (𝜑𝐹:(-π[,]π)⟶ℂ)
fourierdlem93.7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem93.8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem93.9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem93 (𝜑 → ∫(-π[,]π)(𝐹𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠)
Distinct variable groups:   𝑖,𝐹,𝑠,𝑡   𝑖,𝐻,𝑠,𝑡   𝑡,𝐿   𝑖,𝑀,𝑚,𝑝   𝑀,𝑠,𝑡   𝑄,𝑖,𝑝   𝑄,𝑠,𝑡   𝑡,𝑅   𝑖,𝑋,𝑠,𝑡   𝜑,𝑖,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑡,𝑖,𝑚,𝑠,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑠,𝑝)   𝐹(𝑚,𝑝)   𝐻(𝑚,𝑝)   𝐿(𝑖,𝑚,𝑠,𝑝)   𝑋(𝑚,𝑝)

Proof of Theorem fourierdlem93
Dummy variables 𝑟 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem93.4 . . . . . . . 8 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem93.3 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
3 fourierdlem93.1 . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 39002 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . . 8 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 221 . . . . . . 7 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simprd 478 . . . . . 6 (𝜑 → (((𝑄‘0) = -π ∧ (𝑄𝑀) = π) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
87simplld 787 . . . . 5 (𝜑 → (𝑄‘0) = -π)
98eqcomd 2616 . . . 4 (𝜑 → -π = (𝑄‘0))
107simplrd 789 . . . . 5 (𝜑 → (𝑄𝑀) = π)
1110eqcomd 2616 . . . 4 (𝜑 → π = (𝑄𝑀))
129, 11oveq12d 6567 . . 3 (𝜑 → (-π[,]π) = ((𝑄‘0)[,](𝑄𝑀)))
1312itgeq1d 38848 . 2 (𝜑 → ∫(-π[,]π)(𝐹𝑡) d𝑡 = ∫((𝑄‘0)[,](𝑄𝑀))(𝐹𝑡) d𝑡)
14 0zd 11266 . . 3 (𝜑 → 0 ∈ ℤ)
15 nnuz 11599 . . . . 5 ℕ = (ℤ‘1)
162, 15syl6eleq 2698 . . . 4 (𝜑𝑀 ∈ (ℤ‘1))
17 1e0p1 11428 . . . . . 6 1 = (0 + 1)
1817a1i 11 . . . . 5 (𝜑 → 1 = (0 + 1))
1918fveq2d 6107 . . . 4 (𝜑 → (ℤ‘1) = (ℤ‘(0 + 1)))
2016, 19eleqtrd 2690 . . 3 (𝜑𝑀 ∈ (ℤ‘(0 + 1)))
213, 2, 1fourierdlem15 39015 . . . 4 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
22 pire 24014 . . . . . . 7 π ∈ ℝ
2322renegcli 10221 . . . . . 6 -π ∈ ℝ
24 iccssre 12126 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
2523, 22, 24mp2an 704 . . . . 5 (-π[,]π) ⊆ ℝ
2625a1i 11 . . . 4 (𝜑 → (-π[,]π) ⊆ ℝ)
2721, 26fssd 5970 . . 3 (𝜑𝑄:(0...𝑀)⟶ℝ)
287simprd 478 . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2928r19.21bi 2916 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
30 fourierdlem93.6 . . . . 5 (𝜑𝐹:(-π[,]π)⟶ℂ)
3130adantr 480 . . . 4 ((𝜑𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝐹:(-π[,]π)⟶ℂ)
32 simpr 476 . . . . 5 ((𝜑𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
3312eqcomd 2616 . . . . . 6 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) = (-π[,]π))
3433adantr 480 . . . . 5 ((𝜑𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀))) → ((𝑄‘0)[,](𝑄𝑀)) = (-π[,]π))
3532, 34eleqtrd 2690 . . . 4 ((𝜑𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑡 ∈ (-π[,]π))
3631, 35ffvelrnd 6268 . . 3 ((𝜑𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝐹𝑡) ∈ ℂ)
3727adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
38 elfzofz 12354 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
3938adantl 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
4037, 39ffvelrnd 6268 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
41 fzofzp1 12431 . . . . . 6 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
4241adantl 481 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
4337, 42ffvelrnd 6268 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
4430feqmptd 6159 . . . . . . . . . 10 (𝜑𝐹 = (𝑡 ∈ (-π[,]π) ↦ (𝐹𝑡)))
4544adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹 = (𝑡 ∈ (-π[,]π) ↦ (𝐹𝑡)))
4645reseq1d 5316 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑡 ∈ (-π[,]π) ↦ (𝐹𝑡)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
47 ioossicc 12130 . . . . . . . . . . 11 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
4847a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
4923rexri 9976 . . . . . . . . . . . . . 14 -π ∈ ℝ*
5049a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → -π ∈ ℝ*)
5122rexri 9976 . . . . . . . . . . . . . 14 π ∈ ℝ*
5251a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → π ∈ ℝ*)
5321ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π))
54 simplr 788 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
55 simpr 476 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
5650, 52, 53, 54, 55fourierdlem1 39001 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑡 ∈ (-π[,]π))
5756ralrimiva 2949 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))𝑡 ∈ (-π[,]π))
58 dfss3 3558 . . . . . . . . . . 11 (((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π) ↔ ∀𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))𝑡 ∈ (-π[,]π))
5957, 58sylibr 223 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
6048, 59sstrd 3578 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
6160resmptd 5371 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑡 ∈ (-π[,]π) ↦ (𝐹𝑡)) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)))
6246, 61eqtrd 2644 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)))
6362eqcomd 2616 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
64 fourierdlem93.7 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
6563, 64eqeltrd 2688 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
66 fourierdlem93.9 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
6762oveq1d 6564 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) lim (𝑄‘(𝑖 + 1))))
6866, 67eleqtrd 2690 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) lim (𝑄‘(𝑖 + 1))))
69 fourierdlem93.8 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
7062oveq1d 6564 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) lim (𝑄𝑖)))
7169, 70eleqtrd 2690 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) lim (𝑄𝑖)))
7240, 43, 65, 68, 71iblcncfioo 38870 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) ∈ 𝐿1)
7330ad2antrr 758 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:(-π[,]π)⟶ℂ)
7473, 56ffvelrnd 6268 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑡) ∈ ℂ)
7540, 43, 72, 74ibliooicc 38863 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐹𝑡)) ∈ 𝐿1)
7614, 20, 27, 29, 36, 75itgspltprt 38871 . 2 (𝜑 → ∫((𝑄‘0)[,](𝑄𝑀))(𝐹𝑡) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹𝑡) d𝑡)
77 fvres 6117 . . . . . . . 8 (𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) = (𝐹𝑡))
7877eqcomd 2616 . . . . . . 7 (𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) → (𝐹𝑡) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡))
7978adantl 481 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑡) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡))
8079itgeq2dv 23354 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹𝑡) d𝑡 = ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) d𝑡)
81 eqid 2610 . . . . . 6 (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥)))) = (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑥))))
8230adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:(-π[,]π)⟶ℂ)
8382, 59fssresd 5984 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))):((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))⟶ℂ)
8448resabs1d 5348 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
8584, 64eqeltrd 2688 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
8684oveq1d 6564 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
8740, 43, 29, 83limcicciooub 38704 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
8886, 87eqtr3d 2646 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
8966, 88eleqtrd 2690 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
9084eqcomd 2616 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
9190oveq1d 6564 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
9240, 43, 29, 83limciccioolb 38688 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
9391, 92eqtrd 2644 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
9469, 93eleqtrd 2690 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
95 fourierdlem93.5 . . . . . . 7 (𝜑𝑋 ∈ ℝ)
9695adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
9781, 40, 43, 29, 83, 85, 89, 94, 96fourierdlem82 39081 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘𝑡) d𝑡 = ∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) d𝑡)
9840adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄𝑖) ∈ ℝ)
9943adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
10095ad2antrr 758 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑋 ∈ ℝ)
10198, 100resubcld 10337 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄𝑖) − 𝑋) ∈ ℝ)
10299, 100resubcld 10337 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
103 simpr 476 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)))
104 eliccre 38575 . . . . . . . . . 10 ((((𝑄𝑖) − 𝑋) ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ ℝ)
105101, 102, 103, 104syl3anc 1318 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ∈ ℝ)
106100, 105readdcld 9948 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ∈ ℝ)
107 elicc2 12109 . . . . . . . . . . . 12 ((((𝑄𝑖) − 𝑋) ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ) → (𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)) ↔ (𝑡 ∈ ℝ ∧ ((𝑄𝑖) − 𝑋) ≤ 𝑡𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋))))
108101, 102, 107syl2anc 691 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)) ↔ (𝑡 ∈ ℝ ∧ ((𝑄𝑖) − 𝑋) ≤ 𝑡𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋))))
109103, 108mpbid 221 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑡 ∈ ℝ ∧ ((𝑄𝑖) − 𝑋) ≤ 𝑡𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋)))
110109simp2d 1067 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑄𝑖) − 𝑋) ≤ 𝑡)
11198, 100, 105lesubadd2d 10505 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (((𝑄𝑖) − 𝑋) ≤ 𝑡 ↔ (𝑄𝑖) ≤ (𝑋 + 𝑡)))
112110, 111mpbid 221 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑄𝑖) ≤ (𝑋 + 𝑡))
113109simp3d 1068 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋))
114100, 105, 99leaddsub2d 10508 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝑋 + 𝑡) ≤ (𝑄‘(𝑖 + 1)) ↔ 𝑡 ≤ ((𝑄‘(𝑖 + 1)) − 𝑋)))
115113, 114mpbird 246 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ≤ (𝑄‘(𝑖 + 1)))
11698, 99, 106, 112, 115eliccd 38573 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → (𝑋 + 𝑡) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
117 fvres 6117 . . . . . . 7 ((𝑋 + 𝑡) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
118116, 117syl 17 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))) → ((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
119118itgeq2dv 23354 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))((𝐹 ↾ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) d𝑡 = ∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
12080, 97, 1193eqtrd 2648 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹𝑡) d𝑡 = ∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
121120sumeq2dv 14281 . . 3 (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹𝑡) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
122 oveq2 6557 . . . . . . 7 (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡))
123122fveq2d 6107 . . . . . 6 (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡)))
124123cbvitgv 23349 . . . . 5 ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡
125124a1i 11 . . . 4 (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
126 fourierdlem93.2 . . . . . . . . 9 𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋))
127126a1i 11 . . . . . . . 8 (𝜑𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋)))
128 fveq2 6103 . . . . . . . . . 10 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
129128oveq1d 6564 . . . . . . . . 9 (𝑖 = 0 → ((𝑄𝑖) − 𝑋) = ((𝑄‘0) − 𝑋))
130129adantl 481 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑄𝑖) − 𝑋) = ((𝑄‘0) − 𝑋))
1312nnzd 11357 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
13214, 131, 143jca 1235 . . . . . . . . 9 (𝜑 → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 ∈ ℤ))
133 0le0 10987 . . . . . . . . . . 11 0 ≤ 0
134133a1i 11 . . . . . . . . . 10 (𝜑 → 0 ≤ 0)
135 0red 9920 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℝ)
1362nnred 10912 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
1372nngt0d 10941 . . . . . . . . . . 11 (𝜑 → 0 < 𝑀)
138135, 136, 137ltled 10064 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑀)
139134, 138jca 553 . . . . . . . . 9 (𝜑 → (0 ≤ 0 ∧ 0 ≤ 𝑀))
140 elfz2 12204 . . . . . . . . 9 (0 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (0 ≤ 0 ∧ 0 ≤ 𝑀)))
141132, 139, 140sylanbrc 695 . . . . . . . 8 (𝜑 → 0 ∈ (0...𝑀))
1428, 23syl6eqel 2696 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ)
143142, 95resubcld 10337 . . . . . . . 8 (𝜑 → ((𝑄‘0) − 𝑋) ∈ ℝ)
144127, 130, 141, 143fvmptd 6197 . . . . . . 7 (𝜑 → (𝐻‘0) = ((𝑄‘0) − 𝑋))
1458oveq1d 6564 . . . . . . 7 (𝜑 → ((𝑄‘0) − 𝑋) = (-π − 𝑋))
146144, 145eqtr2d 2645 . . . . . 6 (𝜑 → (-π − 𝑋) = (𝐻‘0))
147 fveq2 6103 . . . . . . . . . 10 (𝑖 = 𝑀 → (𝑄𝑖) = (𝑄𝑀))
148147oveq1d 6564 . . . . . . . . 9 (𝑖 = 𝑀 → ((𝑄𝑖) − 𝑋) = ((𝑄𝑀) − 𝑋))
149148adantl 481 . . . . . . . 8 ((𝜑𝑖 = 𝑀) → ((𝑄𝑖) − 𝑋) = ((𝑄𝑀) − 𝑋))
15014, 131, 1313jca 1235 . . . . . . . . 9 (𝜑 → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ))
151136leidd 10473 . . . . . . . . . 10 (𝜑𝑀𝑀)
152138, 151jca 553 . . . . . . . . 9 (𝜑 → (0 ≤ 𝑀𝑀𝑀))
153 elfz2 12204 . . . . . . . . 9 (𝑀 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝑀)))
154150, 152, 153sylanbrc 695 . . . . . . . 8 (𝜑𝑀 ∈ (0...𝑀))
15510, 22syl6eqel 2696 . . . . . . . . 9 (𝜑 → (𝑄𝑀) ∈ ℝ)
156155, 95resubcld 10337 . . . . . . . 8 (𝜑 → ((𝑄𝑀) − 𝑋) ∈ ℝ)
157127, 149, 154, 156fvmptd 6197 . . . . . . 7 (𝜑 → (𝐻𝑀) = ((𝑄𝑀) − 𝑋))
15810oveq1d 6564 . . . . . . 7 (𝜑 → ((𝑄𝑀) − 𝑋) = (π − 𝑋))
159157, 158eqtr2d 2645 . . . . . 6 (𝜑 → (π − 𝑋) = (𝐻𝑀))
160146, 159oveq12d 6567 . . . . 5 (𝜑 → ((-π − 𝑋)[,](π − 𝑋)) = ((𝐻‘0)[,](𝐻𝑀)))
161160itgeq1d 38848 . . . 4 (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫((𝐻‘0)[,](𝐻𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡)
16227fnvinran 38196 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
16395adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
164162, 163resubcld 10337 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑄𝑖) − 𝑋) ∈ ℝ)
165164, 126fmptd 6292 . . . . . 6 (𝜑𝐻:(0...𝑀)⟶ℝ)
16640, 43, 96, 29ltsub1dd 10518 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − 𝑋) < ((𝑄‘(𝑖 + 1)) − 𝑋))
16739, 164syldan 486 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − 𝑋) ∈ ℝ)
168126fvmpt2 6200 . . . . . . . 8 ((𝑖 ∈ (0...𝑀) ∧ ((𝑄𝑖) − 𝑋) ∈ ℝ) → (𝐻𝑖) = ((𝑄𝑖) − 𝑋))
16939, 167, 168syl2anc 691 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) = ((𝑄𝑖) − 𝑋))
170 fveq2 6103 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
171170oveq1d 6564 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑄𝑖) − 𝑋) = ((𝑄𝑗) − 𝑋))
172171cbvmptv 4678 . . . . . . . . . 10 (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) − 𝑋))
173126, 172eqtri 2632 . . . . . . . . 9 𝐻 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) − 𝑋))
174173a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻 = (𝑗 ∈ (0...𝑀) ↦ ((𝑄𝑗) − 𝑋)))
175 fveq2 6103 . . . . . . . . . 10 (𝑗 = (𝑖 + 1) → (𝑄𝑗) = (𝑄‘(𝑖 + 1)))
176175oveq1d 6564 . . . . . . . . 9 (𝑗 = (𝑖 + 1) → ((𝑄𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋))
177176adantl 481 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑄𝑗) − 𝑋) = ((𝑄‘(𝑖 + 1)) − 𝑋))
17843, 96resubcld 10337 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
179174, 177, 42, 178fvmptd 6197 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) = ((𝑄‘(𝑖 + 1)) − 𝑋))
180166, 169, 1793brtr4d 4615 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) < (𝐻‘(𝑖 + 1)))
181 frn 5966 . . . . . . . . 9 (𝐹:(-π[,]π)⟶ℂ → ran 𝐹 ⊆ ℂ)
18230, 181syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ ℂ)
183182adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → ran 𝐹 ⊆ ℂ)
184 ffun 5961 . . . . . . . . . 10 (𝐹:(-π[,]π)⟶ℂ → Fun 𝐹)
18530, 184syl 17 . . . . . . . . 9 (𝜑 → Fun 𝐹)
186185adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → Fun 𝐹)
18723a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → -π ∈ ℝ)
18822a1i 11 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → π ∈ ℝ)
18995adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → 𝑋 ∈ ℝ)
190144, 143eqeltrd 2688 . . . . . . . . . . . . 13 (𝜑 → (𝐻‘0) ∈ ℝ)
191190adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝐻‘0) ∈ ℝ)
192157, 156eqeltrd 2688 . . . . . . . . . . . . 13 (𝜑 → (𝐻𝑀) ∈ ℝ)
193192adantr 480 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝐻𝑀) ∈ ℝ)
194 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → 𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀)))
195 eliccre 38575 . . . . . . . . . . . 12 (((𝐻‘0) ∈ ℝ ∧ (𝐻𝑀) ∈ ℝ ∧ 𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → 𝑡 ∈ ℝ)
196191, 193, 194, 195syl3anc 1318 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → 𝑡 ∈ ℝ)
197189, 196readdcld 9948 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + 𝑡) ∈ ℝ)
198128adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 0) → (𝑄𝑖) = (𝑄‘0))
199198oveq1d 6564 . . . . . . . . . . . . . . 15 ((𝜑𝑖 = 0) → ((𝑄𝑖) − 𝑋) = ((𝑄‘0) − 𝑋))
200127, 199, 141, 143fvmptd 6197 . . . . . . . . . . . . . 14 (𝜑 → (𝐻‘0) = ((𝑄‘0) − 𝑋))
201200oveq2d 6565 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + (𝐻‘0)) = (𝑋 + ((𝑄‘0) − 𝑋)))
20295recnd 9947 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℂ)
203142recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) ∈ ℂ)
204202, 203pncan3d 10274 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + ((𝑄‘0) − 𝑋)) = (𝑄‘0))
205201, 204, 83eqtrrd 2649 . . . . . . . . . . . 12 (𝜑 → -π = (𝑋 + (𝐻‘0)))
206205adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → -π = (𝑋 + (𝐻‘0)))
207 elicc2 12109 . . . . . . . . . . . . . . 15 (((𝐻‘0) ∈ ℝ ∧ (𝐻𝑀) ∈ ℝ) → (𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀)) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡𝑡 ≤ (𝐻𝑀))))
208191, 193, 207syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀)) ↔ (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡𝑡 ≤ (𝐻𝑀))))
209194, 208mpbid 221 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑡 ∈ ℝ ∧ (𝐻‘0) ≤ 𝑡𝑡 ≤ (𝐻𝑀)))
210209simp2d 1067 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝐻‘0) ≤ 𝑡)
211191, 196, 189, 210leadd2dd 10521 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + (𝐻‘0)) ≤ (𝑋 + 𝑡))
212206, 211eqbrtrd 4605 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → -π ≤ (𝑋 + 𝑡))
213209simp3d 1068 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → 𝑡 ≤ (𝐻𝑀))
214196, 193, 189, 213leadd2dd 10521 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + 𝑡) ≤ (𝑋 + (𝐻𝑀)))
215157oveq2d 6565 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + (𝐻𝑀)) = (𝑋 + ((𝑄𝑀) − 𝑋)))
216155recnd 9947 . . . . . . . . . . . . . 14 (𝜑 → (𝑄𝑀) ∈ ℂ)
217202, 216pncan3d 10274 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + ((𝑄𝑀) − 𝑋)) = (𝑄𝑀))
218215, 217, 103eqtrrd 2649 . . . . . . . . . . . 12 (𝜑 → π = (𝑋 + (𝐻𝑀)))
219218adantr 480 . . . . . . . . . . 11 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → π = (𝑋 + (𝐻𝑀)))
220214, 219breqtrrd 4611 . . . . . . . . . 10 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + 𝑡) ≤ π)
221187, 188, 197, 212, 220eliccd 38573 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + 𝑡) ∈ (-π[,]π))
222 fdm 5964 . . . . . . . . . . . 12 (𝐹:(-π[,]π)⟶ℂ → dom 𝐹 = (-π[,]π))
22330, 222syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = (-π[,]π))
224223eqcomd 2616 . . . . . . . . . 10 (𝜑 → (-π[,]π) = dom 𝐹)
225224adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (-π[,]π) = dom 𝐹)
226221, 225eleqtrd 2690 . . . . . . . 8 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝑋 + 𝑡) ∈ dom 𝐹)
227 fvelrn 6260 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑋 + 𝑡) ∈ dom 𝐹) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
228186, 226, 227syl2anc 691 . . . . . . 7 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝐹‘(𝑋 + 𝑡)) ∈ ran 𝐹)
229183, 228sseldd 3569 . . . . . 6 ((𝜑𝑡 ∈ ((𝐻‘0)[,](𝐻𝑀))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ)
230169, 167eqeltrd 2688 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) ∈ ℝ)
231179, 178eqeltrd 2688 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ℝ)
23282, 60fssresd 5984 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
23340rexrd 9968 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
234233adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
23543rexrd 9968 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
236235adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
23795ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
238 elioore 12076 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → 𝑡 ∈ ℝ)
239238adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ℝ)
240237, 239readdcld 9948 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ℝ)
241169oveq2d 6565 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻𝑖)) = (𝑋 + ((𝑄𝑖) − 𝑋)))
242202adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℂ)
24340recnd 9947 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
244242, 243pncan3d 10274 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑄𝑖) − 𝑋)) = (𝑄𝑖))
245 eqidd 2611 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = (𝑄𝑖))
246241, 244, 2453eqtrrd 2649 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = (𝑋 + (𝐻𝑖)))
247246adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄𝑖) = (𝑋 + (𝐻𝑖)))
248230adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻𝑖) ∈ ℝ)
249 simpr 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
250248rexrd 9968 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻𝑖) ∈ ℝ*)
251231rexrd 9968 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ℝ*)
252251adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘(𝑖 + 1)) ∈ ℝ*)
253 elioo2 12087 . . . . . . . . . . . . . . . . . 18 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ*) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↔ (𝑡 ∈ ℝ ∧ (𝐻𝑖) < 𝑡𝑡 < (𝐻‘(𝑖 + 1)))))
254250, 252, 253syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↔ (𝑡 ∈ ℝ ∧ (𝐻𝑖) < 𝑡𝑡 < (𝐻‘(𝑖 + 1)))))
255249, 254mpbid 221 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑡 ∈ ℝ ∧ (𝐻𝑖) < 𝑡𝑡 < (𝐻‘(𝑖 + 1))))
256255simp2d 1067 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻𝑖) < 𝑡)
257248, 239, 237, 256ltadd2dd 10075 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + (𝐻𝑖)) < (𝑋 + 𝑡))
258247, 257eqbrtrd 4605 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑋 + 𝑡))
259231adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝐻‘(𝑖 + 1)) ∈ ℝ)
260255simp3d 1068 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑡 < (𝐻‘(𝑖 + 1)))
261239, 259, 237, 260ltadd2dd 10075 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) < (𝑋 + (𝐻‘(𝑖 + 1))))
262179oveq2d 6565 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑋 + ((𝑄‘(𝑖 + 1)) − 𝑋)))
26343recnd 9947 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ)
264242, 263pncan3d 10274 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + ((𝑄‘(𝑖 + 1)) − 𝑋)) = (𝑄‘(𝑖 + 1)))
265262, 264eqtrd 2644 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1)))
266265adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + (𝐻‘(𝑖 + 1))) = (𝑄‘(𝑖 + 1)))
267261, 266breqtrd 4609 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) < (𝑄‘(𝑖 + 1)))
268234, 236, 240, 258, 267eliood 38567 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
269 eqid 2610 . . . . . . . . . . . 12 (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))
270268, 269fmptd 6292 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))⟶((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
271 fcompt 6306 . . . . . . . . . . 11 (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ ∧ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))⟶((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))))
272232, 270, 271syl2anc 691 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))))
273 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑟 → (𝑋 + 𝑡) = (𝑋 + 𝑟))
274273cbvmptv 4678 . . . . . . . . . . . . . . 15 (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))
275274fveq1i 6104 . . . . . . . . . . . . . 14 ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = ((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)
276275fveq2i 6106 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))
277276mpteq2i 4669 . . . . . . . . . . . 12 (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)))
278277a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))))
279 fveq2 6103 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → ((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠) = ((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))
280279fveq2d 6107 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)))
281280cbvmptv 4678 . . . . . . . . . . . 12 (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)))
282281a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑠))) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))))
283 eqidd 2611 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → (𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟)) = (𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟)))
284 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑡 → (𝑋 + 𝑟) = (𝑋 + 𝑡))
285284adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) ∧ 𝑟 = 𝑡) → (𝑋 + 𝑟) = (𝑋 + 𝑡))
286283, 285, 249, 240fvmptd 6197 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡) = (𝑋 + 𝑡))
287286fveq2d 6107 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)))
288 fvres 6117 . . . . . . . . . . . . . 14 ((𝑋 + 𝑡) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
289268, 288syl 17 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝑋 + 𝑡)) = (𝐹‘(𝑋 + 𝑡)))
290287, 289eqtrd 2644 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡)) = (𝐹‘(𝑋 + 𝑡)))
291290mpteq2dva 4672 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑟 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑟))‘𝑡))) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))))
292278, 282, 2913eqtrd 2648 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))))
293272, 292eqtr2d 2645 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))))
294 eqid 2610 . . . . . . . . . . 11 (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡))
295 ssid 3587 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
296295a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ℂ ⊆ ℂ)
297 id 22 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
298296, 297, 296constcncfg 38756 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑋) ∈ (ℂ–cn→ℂ))
299 cncfmptid 22523 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
300295, 295, 299mp2an 704 . . . . . . . . . . . . . 14 (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ)
301300a1i 11 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ 𝑡) ∈ (ℂ–cn→ℂ))
302298, 301addcncf 38758 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) ∈ (ℂ–cn→ℂ))
303242, 302syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ℂ ↦ (𝑋 + 𝑡)) ∈ (ℂ–cn→ℂ))
304 ioosscn 38563 . . . . . . . . . . . 12 ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ⊆ ℂ
305304a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ⊆ ℂ)
306 ioosscn 38563 . . . . . . . . . . . 12 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
307306a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
308294, 303, 305, 307, 268cncfmptssg 38755 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
309308, 64cncfco 22518 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→ℂ))
310293, 309eqeltrd 2688 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))–cn→ℂ))
311233adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄𝑖) ∈ ℝ*)
312235adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
313 simpr 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)))
314 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑟 ∈ V
315269elrnmpt 5293 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ V → (𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ↔ ∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡)))
316314, 315ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ↔ ∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡))
317313, 316sylib 207 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡))
318 nfv 1830 . . . . . . . . . . . . . . . . . 18 𝑡(𝜑𝑖 ∈ (0..^𝑀))
319 nfmpt1 4675 . . . . . . . . . . . . . . . . . . . 20 𝑡(𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))
320319nfrn 5289 . . . . . . . . . . . . . . . . . . 19 𝑡ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))
321320nfcri 2745 . . . . . . . . . . . . . . . . . 18 𝑡 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))
322318, 321nfan 1816 . . . . . . . . . . . . . . . . 17 𝑡((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)))
323 nfv 1830 . . . . . . . . . . . . . . . . 17 𝑡 𝑟 ∈ ℝ
324 simp3 1056 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 = (𝑋 + 𝑡))
325953ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑋 ∈ ℝ)
3262383ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑡 ∈ ℝ)
327325, 326readdcld 9948 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑋 + 𝑡) ∈ ℝ)
328324, 327eqeltrd 2688 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 ∈ ℝ)
3293283exp 1256 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ)))
330329ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ)))
331322, 323, 330rexlimd 3008 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → 𝑟 ∈ ℝ))
332317, 331mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ℝ)
333 nfv 1830 . . . . . . . . . . . . . . . . 17 𝑡(𝑄𝑖) < 𝑟
3342583adant3 1074 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑄𝑖) < (𝑋 + 𝑡))
335 simp3 1056 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 = (𝑋 + 𝑡))
336334, 335breqtrrd 4611 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑄𝑖) < 𝑟)
3373363exp 1256 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → (𝑄𝑖) < 𝑟)))
338337adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → (𝑄𝑖) < 𝑟)))
339322, 333, 338rexlimd 3008 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → (𝑄𝑖) < 𝑟))
340317, 339mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄𝑖) < 𝑟)
341 nfv 1830 . . . . . . . . . . . . . . . . 17 𝑡 𝑟 < (𝑄‘(𝑖 + 1))
3422673adant3 1074 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → (𝑋 + 𝑡) < (𝑄‘(𝑖 + 1)))
343335, 342eqbrtrd 4605 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∧ 𝑟 = (𝑋 + 𝑡)) → 𝑟 < (𝑄‘(𝑖 + 1)))
3443433exp 1256 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1)))))
345344adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → (𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1)))))
346322, 341, 345rexlimd 3008 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (∃𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))𝑟 = (𝑋 + 𝑡) → 𝑟 < (𝑄‘(𝑖 + 1))))
347317, 346mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 < (𝑄‘(𝑖 + 1)))
348311, 312, 332, 340, 347eliood 38567 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
349223ineq2d 3776 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ (-π[,]π)))
350349adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ (-π[,]π)))
351 dmres 5339 . . . . . . . . . . . . . . . . 17 dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹)
352351a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ dom 𝐹))
353 dfss 3555 . . . . . . . . . . . . . . . . 17 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π) ↔ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ (-π[,]π)))
35460, 353sylib 207 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∩ (-π[,]π)))
355350, 352, 3543eqtr4d 2654 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
356355adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
357348, 356eleqtrrd 2691 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
358332, 347ltned 10052 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ≠ (𝑄‘(𝑖 + 1)))
359358neneqd 2787 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 = (𝑄‘(𝑖 + 1)))
360 velsn 4141 . . . . . . . . . . . . . 14 (𝑟 ∈ {(𝑄‘(𝑖 + 1))} ↔ 𝑟 = (𝑄‘(𝑖 + 1)))
361359, 360sylnibr 318 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 ∈ {(𝑄‘(𝑖 + 1))})
362357, 361eldifd 3551 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}))
363362ralrimiva 2949 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}))
364 dfss3 3558 . . . . . . . . . . 11 (ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}) ↔ ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}))
365363, 364sylibr 223 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄‘(𝑖 + 1))}))
366 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠))
367202adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ ℂ) → 𝑋 ∈ ℂ)
368 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ ℂ) → 𝑠 ∈ ℂ)
369367, 368addcomd 10117 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ ℂ) → (𝑋 + 𝑠) = (𝑠 + 𝑋))
370369mpteq2dva 4672 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)))
371 eqid 2610 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) = (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋))
372371addccncf 22527 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ ℂ → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
373202, 372syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑠 + 𝑋)) ∈ (ℂ–cn→ℂ))
374370, 373eqeltrd 2688 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ))
375374adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ℂ ↦ (𝑋 + 𝑠)) ∈ (ℂ–cn→ℂ))
376230rexrd 9968 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) ∈ ℝ*)
377 iocssre 12124 . . . . . . . . . . . . . . . . . . 19 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ) → ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℝ)
378376, 231, 377syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℝ)
379 ax-resscn 9872 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℂ
380378, 379syl6ss 3580 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ)
381295a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ℂ ⊆ ℂ)
382202ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℂ)
383380sselda 3568 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℂ)
384382, 383addcld 9938 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℂ)
385366, 375, 380, 381, 384cncfmptssg 38755 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ))
386 eqid 2610 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
387 eqid 2610 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) = ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))))
388386cnfldtop 22397 . . . . . . . . . . . . . . . . . . . 20 (TopOpen‘ℂfld) ∈ Top
389 unicntop 38230 . . . . . . . . . . . . . . . . . . . . 21 ℂ = (TopOpen‘ℂfld)
390389restid 15917 . . . . . . . . . . . . . . . . . . . 20 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
391388, 390ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
392391eqcomi 2619 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
393386, 387, 392cncfcn 22520 . . . . . . . . . . . . . . . . 17 ((((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
394380, 381, 393syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
395385, 394eleqtrd 2690 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
396386cnfldtopon 22396 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
397396a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
398 resttopon 20775 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))))
399397, 380, 398syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))))
400 cncnp 20894 . . . . . . . . . . . . . . . 16 ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))))
401399, 397, 400syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))))
402395, 401mpbid 221 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡)))
403402simprd 478 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))
404 ubioc1 12098 . . . . . . . . . . . . . 14 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐻𝑖) < (𝐻‘(𝑖 + 1))) → (𝐻‘(𝑖 + 1)) ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))))
405376, 251, 180, 404syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))))
406 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑡 = (𝐻‘(𝑖 + 1)) → ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) = ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))
407406eleq2d 2673 . . . . . . . . . . . . . 14 (𝑡 = (𝐻‘(𝑖 + 1)) → ((𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) ↔ (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))))
408407rspccva 3281 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) ∧ (𝐻‘(𝑖 + 1)) ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) → (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))
409403, 405, 408syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))
410 snunioo2 38578 . . . . . . . . . . . . . 14 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐻𝑖) < (𝐻‘(𝑖 + 1))) → (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) = ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))))
411376, 251, 180, 410syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) = ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))))
412265eqcomd 2616 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = (𝑋 + (𝐻‘(𝑖 + 1))))
413412ad2antrr 758 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑄‘(𝑖 + 1)) = (𝑋 + (𝐻‘(𝑖 + 1))))
414 iftrue 4042 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐻‘(𝑖 + 1)) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘(𝑖 + 1)))
415414adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄‘(𝑖 + 1)))
416 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐻‘(𝑖 + 1)) → (𝑋 + 𝑠) = (𝑋 + (𝐻‘(𝑖 + 1))))
417416adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑋 + 𝑠) = (𝑋 + (𝐻‘(𝑖 + 1))))
418413, 415, 4173eqtr4d 2654 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
419 iffalse 4045 . . . . . . . . . . . . . . . 16 𝑠 = (𝐻‘(𝑖 + 1)) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))
420419adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))
421 eqidd 2611 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)))
422 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑠 → (𝑋 + 𝑡) = (𝑋 + 𝑠))
423422adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) ∧ 𝑡 = 𝑠) → (𝑋 + 𝑡) = (𝑋 + 𝑠))
424 velsn 4141 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ {(𝐻‘(𝑖 + 1))} ↔ 𝑠 = (𝐻‘(𝑖 + 1)))
425424notbii 309 . . . . . . . . . . . . . . . . . . 19 𝑠 ∈ {(𝐻‘(𝑖 + 1))} ↔ ¬ 𝑠 = (𝐻‘(𝑖 + 1)))
426 elun 3715 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↔ (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}))
427426biimpi 205 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}))
428427orcomd 402 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (𝑠 ∈ {(𝐻‘(𝑖 + 1))} ∨ 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
429428ord 391 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (¬ 𝑠 ∈ {(𝐻‘(𝑖 + 1))} → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
430425, 429syl5bir 232 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) → (¬ 𝑠 = (𝐻‘(𝑖 + 1)) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
431430imp 444 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
432431adantll 746 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
43395ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → 𝑋 ∈ ℝ)
434 elioore 12076 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) → 𝑠 ∈ ℝ)
435434adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℝ)
436 elsni 4142 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ {(𝐻‘(𝑖 + 1))} → 𝑠 = (𝐻‘(𝑖 + 1)))
437436adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → 𝑠 = (𝐻‘(𝑖 + 1)))
438231adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → (𝐻‘(𝑖 + 1)) ∈ ℝ)
439437, 438eqeltrd 2688 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻‘(𝑖 + 1))}) → 𝑠 ∈ ℝ)
440435, 439jaodan 822 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻‘(𝑖 + 1))})) → 𝑠 ∈ ℝ)
441426, 440sylan2b 491 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → 𝑠 ∈ ℝ)
442433, 441readdcld 9948 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → (𝑋 + 𝑠) ∈ ℝ)
443442adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → (𝑋 + 𝑠) ∈ ℝ)
444421, 423, 432, 443fvmptd 6197 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = (𝑋 + 𝑠))
445420, 444eqtrd 2644 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) ∧ ¬ 𝑠 = (𝐻‘(𝑖 + 1))) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
446418, 445pm2.61dan 828 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) → if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
447411, 446mpteq12dva 4662 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻𝑖)(,](𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)))
448411oveq2d 6565 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) = ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))))
449448oveq1d 6564 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld)))
450449fveq1d 6105 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))) = ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)(,](𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))
451409, 447, 4503eltr4d 2703 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1))))
452 eqid 2610 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) = ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}))
453 eqid 2610 . . . . . . . . . . . 12 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)))
454270, 307fssd 5970 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)):((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))⟶ℂ)
455231recnd 9947 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻‘(𝑖 + 1)) ∈ ℂ)
456452, 386, 453, 454, 305, 455ellimc 23443 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) lim (𝐻‘(𝑖 + 1))) ↔ (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))}) ↦ if(𝑠 = (𝐻‘(𝑖 + 1)), (𝑄‘(𝑖 + 1)), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻‘(𝑖 + 1))})) CnP (TopOpen‘ℂfld))‘(𝐻‘(𝑖 + 1)))))
457451, 456mpbird 246 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) lim (𝐻‘(𝑖 + 1))))
458365, 457, 66limccog 38687 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) lim (𝐻‘(𝑖 + 1))))
459272, 292eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))))
460459oveq1d 6564 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) lim (𝐻‘(𝑖 + 1))) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) lim (𝐻‘(𝑖 + 1))))
461458, 460eleqtrd 2690 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) lim (𝐻‘(𝑖 + 1))))
46240adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → (𝑄𝑖) ∈ ℝ)
463462, 340gtned 10051 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ≠ (𝑄𝑖))
464463neneqd 2787 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 = (𝑄𝑖))
465 velsn 4141 . . . . . . . . . . . . . 14 (𝑟 ∈ {(𝑄𝑖)} ↔ 𝑟 = (𝑄𝑖))
466464, 465sylnibr 318 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → ¬ 𝑟 ∈ {(𝑄𝑖)})
467357, 466eldifd 3551 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) → 𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄𝑖)}))
468467ralrimiva 2949 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄𝑖)}))
469 dfss3 3558 . . . . . . . . . . 11 (ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄𝑖)}) ↔ ∀𝑟 ∈ ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))𝑟 ∈ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄𝑖)}))
470468, 469sylibr 223 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ran (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) ⊆ (dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∖ {(𝑄𝑖)}))
471 icossre 12125 . . . . . . . . . . . . . . . . . . 19 (((𝐻𝑖) ∈ ℝ ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ*) → ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℝ)
472230, 251, 471syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℝ)
473472, 379syl6ss 3580 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ)
474202ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) → 𝑋 ∈ ℂ)
475473sselda 3568 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) → 𝑠 ∈ ℂ)
476474, 475addcld 9938 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑠) ∈ ℂ)
477366, 375, 473, 381, 476cncfmptssg 38755 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ))
478 eqid 2610 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) = ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
479386, 478, 392cncfcn 22520 . . . . . . . . . . . . . . . . 17 ((((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
480473, 381, 479syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
481477, 480eleqtrd 2690 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)))
482 resttopon 20775 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))))
483397, 473, 482syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))))
484 cncnp 20894 . . . . . . . . . . . . . . . 16 ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) ∈ (TopOn‘((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))))
485483, 397, 484syl2anc 691 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))))
486481, 485mpbid 221 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)):((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))⟶ℂ ∧ ∀𝑡 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡)))
487486simprd 478 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∀𝑡 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡))
488 lbico1 12099 . . . . . . . . . . . . . 14 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐻𝑖) < (𝐻‘(𝑖 + 1))) → (𝐻𝑖) ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
489376, 251, 180, 488syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
490 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑡 = (𝐻𝑖) → ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) = ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)))
491490eleq2d 2673 . . . . . . . . . . . . . 14 (𝑡 = (𝐻𝑖) → ((𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) ↔ (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻𝑖))))
492491rspccva 3281 . . . . . . . . . . . . 13 ((∀𝑡 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))(𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘𝑡) ∧ (𝐻𝑖) ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) → (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)))
493487, 489, 492syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)) ∈ ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)))
494 uncom 3719 . . . . . . . . . . . . . 14 (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) = ({(𝐻𝑖)} ∪ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
495 snunioo 12169 . . . . . . . . . . . . . . 15 (((𝐻𝑖) ∈ ℝ* ∧ (𝐻‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐻𝑖) < (𝐻‘(𝑖 + 1))) → ({(𝐻𝑖)} ∪ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) = ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
496376, 251, 180, 495syl3anc 1318 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ({(𝐻𝑖)} ∪ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))) = ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
497494, 496syl5eq 2656 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) = ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))))
498 iftrue 4042 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐻𝑖) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄𝑖))
499498adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻𝑖)) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑄𝑖))
500246adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻𝑖)) → (𝑄𝑖) = (𝑋 + (𝐻𝑖)))
501 oveq2 6557 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝐻𝑖) → (𝑋 + 𝑠) = (𝑋 + (𝐻𝑖)))
502501eqcomd 2616 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐻𝑖) → (𝑋 + (𝐻𝑖)) = (𝑋 + 𝑠))
503502adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻𝑖)) → (𝑋 + (𝐻𝑖)) = (𝑋 + 𝑠))
504499, 500, 5033eqtrd 2648 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 = (𝐻𝑖)) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
505504adantlr 747 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ 𝑠 = (𝐻𝑖)) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
506 iffalse 4045 . . . . . . . . . . . . . . . 16 𝑠 = (𝐻𝑖) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))
507506adantl 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))
508 eqidd 2611 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) = (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)))
509422adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) ∧ 𝑡 = 𝑠) → (𝑋 + 𝑡) = (𝑋 + 𝑠))
510 velsn 4141 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ {(𝐻𝑖)} ↔ 𝑠 = (𝐻𝑖))
511510notbii 309 . . . . . . . . . . . . . . . . . . 19 𝑠 ∈ {(𝐻𝑖)} ↔ ¬ 𝑠 = (𝐻𝑖))
512 elun 3715 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↔ (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻𝑖)}))
513512biimpi 205 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) → (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻𝑖)}))
514513orcomd 402 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) → (𝑠 ∈ {(𝐻𝑖)} ∨ 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
515514ord 391 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) → (¬ 𝑠 ∈ {(𝐻𝑖)} → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
516511, 515syl5bir 232 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) → (¬ 𝑠 = (𝐻𝑖) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1)))))
517516imp 444 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ∧ ¬ 𝑠 = (𝐻𝑖)) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
518517adantll 746 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → 𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))))
51995ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) → 𝑋 ∈ ℝ)
520 elsni 4142 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ {(𝐻𝑖)} → 𝑠 = (𝐻𝑖))
521520adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻𝑖)}) → 𝑠 = (𝐻𝑖))
522230adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻𝑖)}) → (𝐻𝑖) ∈ ℝ)
523521, 522eqeltrd 2688 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ {(𝐻𝑖)}) → 𝑠 ∈ ℝ)
524435, 523jaodan 822 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ (𝑠 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∨ 𝑠 ∈ {(𝐻𝑖)})) → 𝑠 ∈ ℝ)
525512, 524sylan2b 491 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) → 𝑠 ∈ ℝ)
526519, 525readdcld 9948 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) → (𝑋 + 𝑠) ∈ ℝ)
527526adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → (𝑋 + 𝑠) ∈ ℝ)
528508, 509, 518, 527fvmptd 6197 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠) = (𝑋 + 𝑠))
529507, 528eqtrd 2644 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) ∧ ¬ 𝑠 = (𝐻𝑖)) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
530505, 529pm2.61dan 828 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) → if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)) = (𝑋 + 𝑠))
531497, 530mpteq12dva 4662 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↦ if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑠)))
532497oveq2d 6565 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) = ((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))))
533532oveq1d 6564 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) CnP (TopOpen‘ℂfld)) = (((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld)))
534533fveq1d 6105 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)) = ((((TopOpen‘ℂfld) ↾t ((𝐻𝑖)[,)(𝐻‘(𝑖 + 1)))) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)))
535493, 531, 5343eltr4d 2703 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↦ if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) CnP (TopOpen‘ℂfld))‘(𝐻𝑖)))
536 eqid 2610 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) = ((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}))
537 eqid 2610 . . . . . . . . . . . 12 (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↦ if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) = (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↦ if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠)))
538230recnd 9947 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻𝑖) ∈ ℂ)
539536, 386, 537, 454, 305, 538ellimc 23443 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) lim (𝐻𝑖)) ↔ (𝑠 ∈ (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)}) ↦ if(𝑠 = (𝐻𝑖), (𝑄𝑖), ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))‘𝑠))) ∈ ((((TopOpen‘ℂfld) ↾t (((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ∪ {(𝐻𝑖)})) CnP (TopOpen‘ℂfld))‘(𝐻𝑖))))
540535, 539mpbird 246 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡)) lim (𝐻𝑖)))
541470, 540, 69limccog 38687 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) lim (𝐻𝑖)))
542459oveq1d 6564 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∘ (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝑋 + 𝑡))) lim (𝐻𝑖)) = ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) lim (𝐻𝑖)))
543541, 542eleqtrd 2690 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) lim (𝐻𝑖)))
544230, 231, 310, 461, 543iblcncfioo 38870 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)(,)(𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈ 𝐿1)
54530ad2antrr 758 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝐹:(-π[,]π)⟶ℂ)
54649a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → -π ∈ ℝ*)
54751a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → π ∈ ℝ*)
54821ad2antrr 758 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π))
549 simplr 788 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
550 simpr 476 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1))))
551169, 179oveq12d 6567 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻𝑖)[,](𝐻‘(𝑖 + 1))) = (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)))
552551adantr 480 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → ((𝐻𝑖)[,](𝐻‘(𝑖 + 1))) = (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)))
553550, 552eleqtrd 2690 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → 𝑡 ∈ (((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋)))
554553, 116syldan 486 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
555546, 547, 548, 549, 554fourierdlem1 39001 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝑋 + 𝑡) ∈ (-π[,]π))
556545, 555ffvelrnd 6268 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))) → (𝐹‘(𝑋 + 𝑡)) ∈ ℂ)
557230, 231, 544, 556ibliooicc 38863 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑡 ∈ ((𝐻𝑖)[,](𝐻‘(𝑖 + 1))) ↦ (𝐹‘(𝑋 + 𝑡))) ∈ 𝐿1)
55814, 20, 165, 180, 229, 557itgspltprt 38871 . . . . 5 (𝜑 → ∫((𝐻‘0)[,](𝐻𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡)
559551itgeq1d 38848 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ∫((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡 = ∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
560559sumeq2dv 14281 . . . . 5 (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝐻𝑖)[,](𝐻‘(𝑖 + 1)))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
561558, 560eqtrd 2644 . . . 4 (𝜑 → ∫((𝐻‘0)[,](𝐻𝑀))(𝐹‘(𝑋 + 𝑡)) d𝑡 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
562125, 161, 5613eqtrd 2648 . . 3 (𝜑 → ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠 = Σ𝑖 ∈ (0..^𝑀)∫(((𝑄𝑖) − 𝑋)[,]((𝑄‘(𝑖 + 1)) − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡)
563121, 562eqtr4d 2647 . 2 (𝜑 → Σ𝑖 ∈ (0..^𝑀)∫((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))(𝐹𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠)
56413, 76, 5633eqtrd 2648 1 (𝜑 → ∫(-π[,]π)(𝐹𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cres 5040  ccom 5042  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146  cn 10897  cz 11254  cuz 11563  (,)cioo 12046  (,]cioc 12047  [,)cico 12048  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  Σcsu 14264  πcpi 14636  t crest 15904  TopOpenctopn 15905  fldccnfld 19567  Topctop 20517  TopOnctopon 20518   Cn ccn 20838   CnP ccnp 20839  cnccncf 22487  citg 23193   lim climc 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-ditg 23417  df-limc 23436  df-dv 23437
This theorem is referenced by:  fourierdlem101  39100
  Copyright terms: Public domain W3C validator