Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptre2pt Structured version   Visualization version   GIF version

Theorem lptre2pt 38707
Description: If a set in the real line has a limit point than it contains two distinct points that are closer than a given distance. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptre2pt.j 𝐽 = (topGen‘ran (,))
lptre2pt.a (𝜑𝐴 ⊆ ℝ)
lptre2pt.x (𝜑 → ((limPt‘𝐽)‘𝐴) ≠ ∅)
lptre2pt.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
lptre2pt (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐸,𝑦   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦

Proof of Theorem lptre2pt
Dummy variables 𝑎 𝑏 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lptre2pt.x . . 3 (𝜑 → ((limPt‘𝐽)‘𝐴) ≠ ∅)
2 n0 3890 . . 3 (((limPt‘𝐽)‘𝐴) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ ((limPt‘𝐽)‘𝐴))
31, 2sylib 207 . 2 (𝜑 → ∃𝑤 𝑤 ∈ ((limPt‘𝐽)‘𝐴))
4 simpr 476 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝑤 ∈ ((limPt‘𝐽)‘𝐴))
5 lptre2pt.j . . . . . . . . 9 𝐽 = (topGen‘ran (,))
6 lptre2pt.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
76adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝐴 ⊆ ℝ)
8 retop 22375 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ Top
95, 8eqeltri 2684 . . . . . . . . . . 11 𝐽 ∈ Top
10 uniretop 22376 . . . . . . . . . . . . 13 ℝ = (topGen‘ran (,))
115unieqi 4381 . . . . . . . . . . . . 13 𝐽 = (topGen‘ran (,))
1210, 11eqtr4i 2635 . . . . . . . . . . . 12 ℝ = 𝐽
1312lpss 20756 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ) → ((limPt‘𝐽)‘𝐴) ⊆ ℝ)
149, 7, 13sylancr 694 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ((limPt‘𝐽)‘𝐴) ⊆ ℝ)
1514, 4sseldd 3569 . . . . . . . . 9 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝑤 ∈ ℝ)
165, 7, 15islptre 38686 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
174, 16mpbid 221 . . . . . . 7 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
18 lptre2pt.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
1918rpred 11748 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
2019adantr 480 . . . . . . . . . . 11 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝐸 ∈ ℝ)
2120rehalfcld 11156 . . . . . . . . . 10 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝐸 / 2) ∈ ℝ)
2215, 21resubcld 10337 . . . . . . . . 9 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 − (𝐸 / 2)) ∈ ℝ)
2322rexrd 9968 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 − (𝐸 / 2)) ∈ ℝ*)
2415, 21readdcld 9948 . . . . . . . . 9 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 + (𝐸 / 2)) ∈ ℝ)
2524rexrd 9968 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 + (𝐸 / 2)) ∈ ℝ*)
2618rphalfcld 11760 . . . . . . . . . 10 (𝜑 → (𝐸 / 2) ∈ ℝ+)
2726adantr 480 . . . . . . . . 9 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝐸 / 2) ∈ ℝ+)
2815, 27ltsubrpd 11780 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑤 − (𝐸 / 2)) < 𝑤)
2915, 27ltaddrpd 11781 . . . . . . . 8 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝑤 < (𝑤 + (𝐸 / 2)))
3023, 25, 15, 28, 29eliood 38567 . . . . . . 7 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → 𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
31 oveq1 6556 . . . . . . . . . . 11 (𝑎 = (𝑤 − (𝐸 / 2)) → (𝑎(,)𝑏) = ((𝑤 − (𝐸 / 2))(,)𝑏))
3231eleq2d 2673 . . . . . . . . . 10 (𝑎 = (𝑤 − (𝐸 / 2)) → (𝑤 ∈ (𝑎(,)𝑏) ↔ 𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)𝑏)))
3331ineq1d 3775 . . . . . . . . . . 11 (𝑎 = (𝑤 − (𝐸 / 2)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) = (((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})))
3433neeq1d 2841 . . . . . . . . . 10 (𝑎 = (𝑤 − (𝐸 / 2)) → (((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ (((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
3532, 34imbi12d 333 . . . . . . . . 9 (𝑎 = (𝑤 − (𝐸 / 2)) → ((𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) ↔ (𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)𝑏) → (((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
36 oveq2 6557 . . . . . . . . . . 11 (𝑏 = (𝑤 + (𝐸 / 2)) → ((𝑤 − (𝐸 / 2))(,)𝑏) = ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
3736eleq2d 2673 . . . . . . . . . 10 (𝑏 = (𝑤 + (𝐸 / 2)) → (𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)𝑏) ↔ 𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))))
3836ineq1d 3775 . . . . . . . . . . 11 (𝑏 = (𝑤 + (𝐸 / 2)) → (((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) = (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})))
3938neeq1d 2841 . . . . . . . . . 10 (𝑏 = (𝑤 + (𝐸 / 2)) → ((((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
4037, 39imbi12d 333 . . . . . . . . 9 (𝑏 = (𝑤 + (𝐸 / 2)) → ((𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)𝑏) → (((𝑤 − (𝐸 / 2))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) ↔ (𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) → (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
4135, 40rspc2v 3293 . . . . . . . 8 (((𝑤 − (𝐸 / 2)) ∈ ℝ* ∧ (𝑤 + (𝐸 / 2)) ∈ ℝ*) → (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) → (𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) → (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
4223, 25, 41syl2anc 691 . . . . . . 7 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) → (𝑤 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) → (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
4317, 30, 42mp2d 47 . . . . . 6 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)
44 n0 3890 . . . . . 6 ((((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})))
4543, 44sylib 207 . . . . 5 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ∃𝑥 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})))
46 elinel2 3762 . . . . . . . . . 10 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → 𝑥 ∈ (𝐴 ∖ {𝑤}))
4746eldifad 3552 . . . . . . . . 9 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → 𝑥𝐴)
4847adantl 481 . . . . . . . 8 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥𝐴)
49 elinel1 3761 . . . . . . . . . 10 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
5049adantl 481 . . . . . . . . 9 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
5146eldifbd 3553 . . . . . . . . . 10 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → ¬ 𝑥 ∈ {𝑤})
5251adantl 481 . . . . . . . . 9 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤}))) → ¬ 𝑥 ∈ {𝑤})
5350, 52eldifd 3551 . . . . . . . 8 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}))
5448, 53jca 553 . . . . . . 7 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤}))) → (𝑥𝐴𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})))
5554ex 449 . . . . . 6 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → (𝑥𝐴𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}))))
5655eximdv 1833 . . . . 5 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (∃𝑥 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∩ (𝐴 ∖ {𝑤})) → ∃𝑥(𝑥𝐴𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}))))
5745, 56mpd 15 . . . 4 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ∃𝑥(𝑥𝐴𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})))
58 df-rex 2902 . . . 4 (∃𝑥𝐴 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) ↔ ∃𝑥(𝑥𝐴𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})))
5957, 58sylibr 223 . . 3 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ∃𝑥𝐴 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}))
6017adantr 480 . . . . . . . . 9 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
61 eldifi 3694 . . . . . . . . . . . 12 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
62 elioore 12076 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) → 𝑥 ∈ ℝ)
6361, 62syl 17 . . . . . . . . . . 11 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → 𝑥 ∈ ℝ)
6463adantl 481 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑥 ∈ ℝ)
6515adantr 480 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑤 ∈ ℝ)
66 eldifsni 4261 . . . . . . . . . . 11 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → 𝑥𝑤)
6766adantl 481 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑥𝑤)
68 simpr 476 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
69 resubcl 10224 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥𝑤) ∈ ℝ)
7069recnd 9947 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥𝑤) ∈ ℂ)
7170abscld 14023 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (abs‘(𝑥𝑤)) ∈ ℝ)
7268, 71resubcld 10337 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ)
7372rexrd 9968 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ*)
74733adant3 1074 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ*)
7568, 71readdcld 9948 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ)
7675rexrd 9968 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ*)
77763adant3 1074 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ*)
78 simp2 1055 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑤 ∈ ℝ)
79703adant3 1074 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (𝑥𝑤) ∈ ℂ)
80 recn 9905 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
81803ad2ant1 1075 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑥 ∈ ℂ)
8278recnd 9947 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑤 ∈ ℂ)
83 simp3 1056 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑥𝑤)
8481, 82, 83subne0d 10280 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (𝑥𝑤) ≠ 0)
8579, 84absrpcld 14035 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (abs‘(𝑥𝑤)) ∈ ℝ+)
8678, 85ltsubrpd 11780 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → (𝑤 − (abs‘(𝑥𝑤))) < 𝑤)
8778, 85ltaddrpd 11781 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑤 < (𝑤 + (abs‘(𝑥𝑤))))
8874, 77, 78, 86, 87eliood 38567 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ 𝑥𝑤) → 𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
8964, 65, 67, 88syl3anc 1318 . . . . . . . . 9 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
9063recnd 9947 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → 𝑥 ∈ ℂ)
9190adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑥 ∈ ℂ)
9265recnd 9947 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑤 ∈ ℂ)
9391, 92subcld 10271 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑥𝑤) ∈ ℂ)
9493abscld 14023 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (abs‘(𝑥𝑤)) ∈ ℝ)
9565, 94resubcld 10337 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ)
9695rexrd 9968 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ*)
9765, 94readdcld 9948 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ)
9897rexrd 9968 . . . . . . . . . 10 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ*)
99 oveq1 6556 . . . . . . . . . . . . 13 (𝑎 = (𝑤 − (abs‘(𝑥𝑤))) → (𝑎(,)𝑏) = ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏))
10099eleq2d 2673 . . . . . . . . . . . 12 (𝑎 = (𝑤 − (abs‘(𝑥𝑤))) → (𝑤 ∈ (𝑎(,)𝑏) ↔ 𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏)))
10199ineq1d 3775 . . . . . . . . . . . . 13 (𝑎 = (𝑤 − (abs‘(𝑥𝑤))) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) = (((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})))
102101neeq1d 2841 . . . . . . . . . . . 12 (𝑎 = (𝑤 − (abs‘(𝑥𝑤))) → (((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ (((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
103100, 102imbi12d 333 . . . . . . . . . . 11 (𝑎 = (𝑤 − (abs‘(𝑥𝑤))) → ((𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) ↔ (𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) → (((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
104 oveq2 6557 . . . . . . . . . . . . 13 (𝑏 = (𝑤 + (abs‘(𝑥𝑤))) → ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) = ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
105104eleq2d 2673 . . . . . . . . . . . 12 (𝑏 = (𝑤 + (abs‘(𝑥𝑤))) → (𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ↔ 𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))))
106104ineq1d 3775 . . . . . . . . . . . . 13 (𝑏 = (𝑤 + (abs‘(𝑥𝑤))) → (((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) = (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})))
107106neeq1d 2841 . . . . . . . . . . . 12 (𝑏 = (𝑤 + (abs‘(𝑥𝑤))) → ((((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅))
108105, 107imbi12d 333 . . . . . . . . . . 11 (𝑏 = (𝑤 + (abs‘(𝑥𝑤))) → ((𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) → (((𝑤 − (abs‘(𝑥𝑤)))(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) ↔ (𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) → (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
109103, 108rspc2v 3293 . . . . . . . . . 10 (((𝑤 − (abs‘(𝑥𝑤))) ∈ ℝ* ∧ (𝑤 + (abs‘(𝑥𝑤))) ∈ ℝ*) → (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) → (𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) → (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
11096, 98, 109syl2anc 691 . . . . . . . . 9 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝑤 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝑤})) ≠ ∅) → (𝑤 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) → (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)))
11160, 89, 110mp2d 47 . . . . . . . 8 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅)
112 n0 3890 . . . . . . . 8 ((((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})))
113111, 112sylib 207 . . . . . . 7 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → ∃𝑦 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})))
114 elinel2 3762 . . . . . . . . . . . 12 (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → 𝑦 ∈ (𝐴 ∖ {𝑤}))
115114eldifad 3552 . . . . . . . . . . 11 (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → 𝑦𝐴)
116115adantl 481 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑦𝐴)
11765adantr 480 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑤 ∈ ℝ)
11864adantr 480 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥 ∈ ℝ)
119 elinel1 3761 . . . . . . . . . . . 12 (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
120119adantl 481 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
121 simpl1 1057 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑤 ∈ ℝ)
122 simpl2 1058 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑥 ∈ ℝ)
123 simpl3 1059 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
124 simpr 476 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 0 ≤ (𝑥𝑤))
125122, 121subge0d 10496 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → (0 ≤ (𝑥𝑤) ↔ 𝑤𝑥))
126124, 125mpbid 221 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑤𝑥)
127121, 122, 126abssubge0d 14018 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → (abs‘(𝑥𝑤)) = (𝑥𝑤))
128127oveq2d 6565 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → (𝑤 − (abs‘(𝑥𝑤))) = (𝑤 − (𝑥𝑤)))
129127oveq2d 6565 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → (𝑤 + (abs‘(𝑥𝑤))) = (𝑤 + (𝑥𝑤)))
130128, 129oveq12d 6567 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) = ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤))))
131123, 130eleqtrd 2690 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤))))
132 elioore 12076 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤))) → 𝑦 ∈ ℝ)
1331323ad2ant3 1077 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑦 ∈ ℝ)
134 simpl 472 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑤 ∈ ℝ)
13569ancoms 468 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝑤) ∈ ℝ)
136134, 135resubcld 10337 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 − (𝑥𝑤)) ∈ ℝ)
137136rexrd 9968 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 − (𝑥𝑤)) ∈ ℝ*)
1381373adant3 1074 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → (𝑤 − (𝑥𝑤)) ∈ ℝ*)
139134, 135readdcld 9948 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 + (𝑥𝑤)) ∈ ℝ)
140139rexrd 9968 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 + (𝑥𝑤)) ∈ ℝ*)
1411403adant3 1074 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → (𝑤 + (𝑥𝑤)) ∈ ℝ*)
142 simp3 1056 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤))))
143 iooltub 38582 . . . . . . . . . . . . . . . 16 (((𝑤 − (𝑥𝑤)) ∈ ℝ* ∧ (𝑤 + (𝑥𝑤)) ∈ ℝ*𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑦 < (𝑤 + (𝑥𝑤)))
144138, 141, 142, 143syl3anc 1318 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑦 < (𝑤 + (𝑥𝑤)))
145134recnd 9947 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑤 ∈ ℂ)
14680adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
147145, 146pncan3d 10274 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 + (𝑥𝑤)) = 𝑥)
1481473adant3 1074 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → (𝑤 + (𝑥𝑤)) = 𝑥)
149144, 148breqtrd 4609 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑦 < 𝑥)
150133, 149gtned 10051 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑥𝑤))(,)(𝑤 + (𝑥𝑤)))) → 𝑥𝑦)
151121, 122, 131, 150syl3anc 1318 . . . . . . . . . . . 12 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ 0 ≤ (𝑥𝑤)) → 𝑥𝑦)
152 simpl1 1057 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑤 ∈ ℝ)
153 simpl2 1058 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑥 ∈ ℝ)
154 simpl3 1059 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
155135adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (𝑥𝑤) ∈ ℝ)
156 0red 9920 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → 0 ∈ ℝ)
157 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → ¬ 0 ≤ (𝑥𝑤))
158155, 156ltnled 10063 . . . . . . . . . . . . . . . . . . . . 21 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → ((𝑥𝑤) < 0 ↔ ¬ 0 ≤ (𝑥𝑤)))
159157, 158mpbird 246 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (𝑥𝑤) < 0)
160155, 156, 159ltled 10064 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (𝑥𝑤) ≤ 0)
161155, 160absnidd 14000 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (abs‘(𝑥𝑤)) = -(𝑥𝑤))
162146adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑥 ∈ ℂ)
163145adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑤 ∈ ℂ)
164162, 163negsubdi2d 10287 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → -(𝑥𝑤) = (𝑤𝑥))
165161, 164eqtrd 2644 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (abs‘(𝑥𝑤)) = (𝑤𝑥))
166165oveq2d 6565 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (𝑤 − (abs‘(𝑥𝑤))) = (𝑤 − (𝑤𝑥)))
167165oveq2d 6565 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → (𝑤 + (abs‘(𝑥𝑤))) = (𝑤 + (𝑤𝑥)))
168166, 167oveq12d 6567 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ¬ 0 ≤ (𝑥𝑤)) → ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) = ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))))
1691683adantl3 1212 . . . . . . . . . . . . . 14 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) = ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))))
170154, 169eleqtrd 2690 . . . . . . . . . . . . 13 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))))
171 simp2 1055 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑥 ∈ ℝ)
172171rexrd 9968 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑥 ∈ ℝ*)
173 resubcl 10224 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤𝑥) ∈ ℝ)
174134, 173readdcld 9948 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 + (𝑤𝑥)) ∈ ℝ)
175174rexrd 9968 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 + (𝑤𝑥)) ∈ ℝ*)
1761753adant3 1074 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → (𝑤 + (𝑤𝑥)) ∈ ℝ*)
177 simp3 1056 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))))
178145, 146nncand 10276 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑤 − (𝑤𝑥)) = 𝑥)
179178oveq1d 6564 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))) = (𝑥(,)(𝑤 + (𝑤𝑥))))
1801793adant3 1074 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥))) = (𝑥(,)(𝑤 + (𝑤𝑥))))
181177, 180eleqtrd 2690 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑦 ∈ (𝑥(,)(𝑤 + (𝑤𝑥))))
182 ioogtlb 38564 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝑤 + (𝑤𝑥)) ∈ ℝ*𝑦 ∈ (𝑥(,)(𝑤 + (𝑤𝑥)))) → 𝑥 < 𝑦)
183172, 176, 181, 182syl3anc 1318 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑥 < 𝑦)
184171, 183ltned 10052 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (𝑤𝑥))(,)(𝑤 + (𝑤𝑥)))) → 𝑥𝑦)
185152, 153, 170, 184syl3anc 1318 . . . . . . . . . . . 12 (((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) ∧ ¬ 0 ≤ (𝑥𝑤)) → 𝑥𝑦)
186151, 185pm2.61dan 828 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → 𝑥𝑦)
187117, 118, 120, 186syl3anc 1318 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥𝑦)
18863adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥 ∈ ℝ)
189 elioore 12076 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) → 𝑦 ∈ ℝ)
190119, 189syl 17 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → 𝑦 ∈ ℝ)
191190adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑦 ∈ ℝ)
192188, 191resubcld 10337 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑥𝑦) ∈ ℝ)
193192recnd 9947 . . . . . . . . . . . . . 14 ((𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑥𝑦) ∈ ℂ)
194193adantll 746 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑥𝑦) ∈ ℂ)
195194abscld 14023 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑦)) ∈ ℝ)
196195adantllr 751 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑦)) ∈ ℝ)
19794adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑤)) ∈ ℝ)
19815adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑤 ∈ ℝ)
199190adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑦 ∈ ℝ)
200198, 199resubcld 10337 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑤𝑦) ∈ ℝ)
201200recnd 9947 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑤𝑦) ∈ ℂ)
202201abscld 14023 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑤𝑦)) ∈ ℝ)
203202adantlr 747 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑤𝑦)) ∈ ℝ)
204197, 203readdcld 9948 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → ((abs‘(𝑥𝑤)) + (abs‘(𝑤𝑦))) ∈ ℝ)
20519ad3antrrr 762 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝐸 ∈ ℝ)
206118recnd 9947 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑥 ∈ ℂ)
207190recnd 9947 . . . . . . . . . . . . 13 (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → 𝑦 ∈ ℂ)
208207adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑦 ∈ ℂ)
20992adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → 𝑤 ∈ ℂ)
210206, 208, 209abs3difd 14047 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑦)) ≤ ((abs‘(𝑥𝑤)) + (abs‘(𝑤𝑦))))
21121ad2antrr 758 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝐸 / 2) ∈ ℝ)
212 simpll 786 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝜑)
21361adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
21462, 146sylan2 490 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → 𝑥 ∈ ℂ)
21562, 145sylan2 490 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → 𝑤 ∈ ℂ)
216214, 215abssubd 14040 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑥𝑤)) = (abs‘(𝑤𝑥)))
2172163adant1 1072 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑥𝑤)) = (abs‘(𝑤𝑥)))
218 simp2 1055 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → 𝑤 ∈ ℝ)
21919rehalfcld 11156 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐸 / 2) ∈ ℝ)
2202193ad2ant1 1075 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (𝐸 / 2) ∈ ℝ)
221 simp3 1056 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))))
222218, 220, 221iooabslt 38568 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑤𝑥)) < (𝐸 / 2))
223217, 222eqbrtrd 4605 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑥𝑤)) < (𝐸 / 2))
224212, 65, 213, 223syl3anc 1318 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (abs‘(𝑥𝑤)) < (𝐸 / 2))
225224adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑤)) < (𝐸 / 2))
226212, 65, 2133jca 1235 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))))
227 simpl 472 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → 𝑤 ∈ ℝ)
228189adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → 𝑦 ∈ ℝ)
229227, 228resubcld 10337 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (𝑤𝑦) ∈ ℝ)
230229recnd 9947 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (𝑤𝑦) ∈ ℂ)
231230abscld 14023 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑤𝑦)) ∈ ℝ)
2322313ad2antl2 1217 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑤𝑦)) ∈ ℝ)
233220adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (𝐸 / 2) ∈ ℝ)
234214, 215subcld 10271 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (𝑥𝑤) ∈ ℂ)
235234abscld 14023 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑥𝑤)) ∈ ℝ)
2362353adant1 1072 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) → (abs‘(𝑥𝑤)) ∈ ℝ)
237236adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑥𝑤)) ∈ ℝ)
238 simpl2 1058 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → 𝑤 ∈ ℝ)
239 simpr 476 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))))
240238, 237, 239iooabslt 38568 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑤𝑦)) < (abs‘(𝑥𝑤)))
241223adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑥𝑤)) < (𝐸 / 2))
242232, 237, 233, 240, 241lttrd 10077 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑤𝑦)) < (𝐸 / 2))
243232, 233, 242ltled 10064 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ℝ ∧ 𝑥 ∈ ((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2)))) ∧ 𝑦 ∈ ((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤))))) → (abs‘(𝑤𝑦)) ≤ (𝐸 / 2))
244226, 119, 243syl2an 493 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑤𝑦)) ≤ (𝐸 / 2))
245197, 203, 211, 211, 225, 244ltleaddd 10527 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → ((abs‘(𝑥𝑤)) + (abs‘(𝑤𝑦))) < ((𝐸 / 2) + (𝐸 / 2)))
24619recnd 9947 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℂ)
2472462halvesd 11155 . . . . . . . . . . . . 13 (𝜑 → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
248247ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → ((𝐸 / 2) + (𝐸 / 2)) = 𝐸)
249245, 248breqtrd 4609 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → ((abs‘(𝑥𝑤)) + (abs‘(𝑤𝑦))) < 𝐸)
250196, 204, 205, 210, 249lelttrd 10074 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (abs‘(𝑥𝑦)) < 𝐸)
251116, 187, 250jca32 556 . . . . . . . . 9 ((((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) ∧ 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤}))) → (𝑦𝐴 ∧ (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸)))
252251ex 449 . . . . . . . 8 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → (𝑦𝐴 ∧ (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))))
253252eximdv 1833 . . . . . . 7 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → (∃𝑦 𝑦 ∈ (((𝑤 − (abs‘(𝑥𝑤)))(,)(𝑤 + (abs‘(𝑥𝑤)))) ∩ (𝐴 ∖ {𝑤})) → ∃𝑦(𝑦𝐴 ∧ (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))))
254113, 253mpd 15 . . . . . 6 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → ∃𝑦(𝑦𝐴 ∧ (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸)))
255 df-rex 2902 . . . . . 6 (∃𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸) ↔ ∃𝑦(𝑦𝐴 ∧ (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸)))
256254, 255sylibr 223 . . . . 5 (((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) ∧ 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤})) → ∃𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))
257256ex 449 . . . 4 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → ∃𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸)))
258257reximdv 2999 . . 3 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → (∃𝑥𝐴 𝑥 ∈ (((𝑤 − (𝐸 / 2))(,)(𝑤 + (𝐸 / 2))) ∖ {𝑤}) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸)))
25959, 258mpd 15 . 2 ((𝜑𝑤 ∈ ((limPt‘𝐽)‘𝐴)) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))
2603, 259exlimddv 1850 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (abs‘(𝑥𝑦)) < 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  cin 3539  wss 3540  c0 3874  {csn 4125   cuni 4372   class class class wbr 4583  ran crn 5039  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  +crp 11708  (,)cioo 12046  abscabs 13822  topGenctg 15921  Topctop 20517  limPtclp 20748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750
This theorem is referenced by:  fourierdlem42  39042
  Copyright terms: Public domain W3C validator