Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem48 Structured version   Visualization version   GIF version

Theorem fourierdlem48 39047
Description: The given periodic function 𝐹 has a right limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem48.a (𝜑𝐴 ∈ ℝ)
fourierdlem48.b (𝜑𝐵 ∈ ℝ)
fourierdlem48.altb (𝜑𝐴 < 𝐵)
fourierdlem48.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem48.t 𝑇 = (𝐵𝐴)
fourierdlem48.m (𝜑𝑀 ∈ ℕ)
fourierdlem48.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem48.f (𝜑𝐹:𝐷⟶ℝ)
fourierdlem48.dper ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
fourierdlem48.per ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem48.cn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem48.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem48.x (𝜑𝑋 ∈ ℝ)
fourierdlem48.z 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
fourierdlem48.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
fourierdlem48.ch (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
Assertion
Ref Expression
fourierdlem48 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
Distinct variable groups:   𝐴,𝑖,𝑥   𝐴,𝑚,𝑝,𝑖   𝐵,𝑖,𝑘,𝑥   𝐵,𝑚,𝑝   𝐷,𝑘,𝑥   𝑖,𝐸,𝑘,𝑦   𝑖,𝐹,𝑘,𝑥,𝑦   𝑖,𝑀,𝑘   𝑚,𝑀,𝑝   𝑦,𝑀   𝑄,𝑖,𝑘,𝑥   𝑄,𝑝   𝑦,𝑄   𝑇,𝑖,𝑘,𝑥,𝑦   𝑖,𝑋,𝑘,𝑥,𝑦   𝑥,𝑍   𝜒,𝑥   𝜑,𝑖,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝜒(𝑦,𝑖,𝑘,𝑚,𝑝)   𝐴(𝑦,𝑘)   𝐵(𝑦)   𝐷(𝑦,𝑖,𝑚,𝑝)   𝑃(𝑥,𝑦,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑥,𝑦,𝑖,𝑘,𝑚,𝑝)   𝑇(𝑚,𝑝)   𝐸(𝑥,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝑀(𝑥)   𝑋(𝑚,𝑝)   𝑍(𝑦,𝑖,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem48
Dummy variables 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . 3 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 𝜑)
2 0zd 11266 . . . . . 6 (𝜑 → 0 ∈ ℤ)
3 fourierdlem48.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
43nnzd 11357 . . . . . 6 (𝜑𝑀 ∈ ℤ)
53nngt0d 10941 . . . . . 6 (𝜑 → 0 < 𝑀)
6 fzolb 12345 . . . . . 6 (0 ∈ (0..^𝑀) ↔ (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
72, 4, 5, 6syl3anbrc 1239 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
87adantr 480 . . . 4 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 0 ∈ (0..^𝑀))
9 fourierdlem48.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
10 fourierdlem48.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
119, 10resubcld 10337 . . . . . . . . 9 (𝜑 → (𝐵𝑋) ∈ ℝ)
12 fourierdlem48.t . . . . . . . . . 10 𝑇 = (𝐵𝐴)
13 fourierdlem48.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
149, 13resubcld 10337 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
1512, 14syl5eqel 2692 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
16 fourierdlem48.altb . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
1713, 9posdifd 10493 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
1816, 17mpbid 221 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
1918, 12syl6breqr 4625 . . . . . . . . . 10 (𝜑 → 0 < 𝑇)
2019gt0ne0d 10471 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
2111, 15, 20redivcld 10732 . . . . . . . 8 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
2221adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐵𝑋) / 𝑇) ∈ ℝ)
2322flcld 12461 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
24 1zzd 11285 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 1 ∈ ℤ)
2523, 24zsubcld 11363 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((⌊‘((𝐵𝑋) / 𝑇)) − 1) ∈ ℤ)
26 id 22 . . . . . . . 8 ((𝐸𝑋) = 𝐵 → (𝐸𝑋) = 𝐵)
2712a1i 11 . . . . . . . 8 ((𝐸𝑋) = 𝐵𝑇 = (𝐵𝐴))
2826, 27oveq12d 6567 . . . . . . 7 ((𝐸𝑋) = 𝐵 → ((𝐸𝑋) − 𝑇) = (𝐵 − (𝐵𝐴)))
299recnd 9947 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
3013recnd 9947 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3129, 30nncand 10276 . . . . . . 7 (𝜑 → (𝐵 − (𝐵𝐴)) = 𝐴)
3228, 31sylan9eqr 2666 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) = 𝐴)
33 fourierdlem48.q . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ (𝑃𝑀))
34 fourierdlem48.p . . . . . . . . . . . . . . . 16 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
3534fourierdlem2 39002 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
363, 35syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3733, 36mpbid 221 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
3837simpld 474 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
39 elmapi 7765 . . . . . . . . . . . 12 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
413nnnn0d 11228 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ0)
42 nn0uz 11598 . . . . . . . . . . . . 13 0 = (ℤ‘0)
4341, 42syl6eleq 2698 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
44 eluzfz1 12219 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
4543, 44syl 17 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
4640, 45ffvelrnd 6268 . . . . . . . . . 10 (𝜑 → (𝑄‘0) ∈ ℝ)
4746rexrd 9968 . . . . . . . . 9 (𝜑 → (𝑄‘0) ∈ ℝ*)
48 1zzd 11285 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
492, 4, 483jca 1235 . . . . . . . . . . . . 13 (𝜑 → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ∈ ℤ))
50 0le1 10430 . . . . . . . . . . . . . 14 0 ≤ 1
5150a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 1)
523nnge1d 10940 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑀)
5349, 51, 52jca32 556 . . . . . . . . . . . 12 (𝜑 → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ≤ 1 ∧ 1 ≤ 𝑀)))
54 elfz2 12204 . . . . . . . . . . . 12 (1 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 1 ∈ ℤ) ∧ (0 ≤ 1 ∧ 1 ≤ 𝑀)))
5553, 54sylibr 223 . . . . . . . . . . 11 (𝜑 → 1 ∈ (0...𝑀))
5640, 55ffvelrnd 6268 . . . . . . . . . 10 (𝜑 → (𝑄‘1) ∈ ℝ)
5756rexrd 9968 . . . . . . . . 9 (𝜑 → (𝑄‘1) ∈ ℝ*)
5813rexrd 9968 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
5937simprd 478 . . . . . . . . . . 11 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
6059simplld 787 . . . . . . . . . 10 (𝜑 → (𝑄‘0) = 𝐴)
6113leidd 10473 . . . . . . . . . 10 (𝜑𝐴𝐴)
6260, 61eqbrtrd 4605 . . . . . . . . 9 (𝜑 → (𝑄‘0) ≤ 𝐴)
6360eqcomd 2616 . . . . . . . . . 10 (𝜑𝐴 = (𝑄‘0))
64 0re 9919 . . . . . . . . . . . . 13 0 ∈ ℝ
65 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
6665anbi2d 736 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
67 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
68 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
6968fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
7067, 69breq12d 4596 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
7166, 70imbi12d 333 . . . . . . . . . . . . . 14 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
7237simprrd 793 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7372r19.21bi 2916 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7471, 73vtoclg 3239 . . . . . . . . . . . . 13 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
7564, 74ax-mp 5 . . . . . . . . . . . 12 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
767, 75mpdan 699 . . . . . . . . . . 11 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
77 1e0p1 11428 . . . . . . . . . . . 12 1 = (0 + 1)
7877fveq2i 6106 . . . . . . . . . . 11 (𝑄‘1) = (𝑄‘(0 + 1))
7976, 78syl6breqr 4625 . . . . . . . . . 10 (𝜑 → (𝑄‘0) < (𝑄‘1))
8063, 79eqbrtrd 4605 . . . . . . . . 9 (𝜑𝐴 < (𝑄‘1))
8147, 57, 58, 62, 80elicod 12095 . . . . . . . 8 (𝜑𝐴 ∈ ((𝑄‘0)[,)(𝑄‘1)))
8278oveq2i 6560 . . . . . . . 8 ((𝑄‘0)[,)(𝑄‘1)) = ((𝑄‘0)[,)(𝑄‘(0 + 1)))
8381, 82syl6eleq 2698 . . . . . . 7 (𝜑𝐴 ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
8483adantr 480 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → 𝐴 ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
8532, 84eqeltrd 2688 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))))
86 fourierdlem48.e . . . . . . . . . . 11 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
8786a1i 11 . . . . . . . . . 10 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))))
88 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑋𝑥 = 𝑋)
89 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
9088, 89oveq12d 6567 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
9190adantl 481 . . . . . . . . . 10 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
92 fourierdlem48.z . . . . . . . . . . . . . 14 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
9392a1i 11 . . . . . . . . . . . . 13 (𝜑𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
94 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
9594oveq1d 6564 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
9695fveq2d 6107 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
9796oveq1d 6564 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
9897adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝑋) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
9921flcld 12461 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
10099zred 11358 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
101100, 15remulcld 9949 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
10293, 98, 10, 101fvmptd 6197 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
103102, 101eqeltrd 2688 . . . . . . . . . . 11 (𝜑 → (𝑍𝑋) ∈ ℝ)
10410, 103readdcld 9948 . . . . . . . . . 10 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℝ)
10587, 91, 10, 104fvmptd 6197 . . . . . . . . 9 (𝜑 → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
106102oveq2d 6565 . . . . . . . . 9 (𝜑 → (𝑋 + (𝑍𝑋)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
107105, 106eqtrd 2644 . . . . . . . 8 (𝜑 → (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
108107oveq1d 6564 . . . . . . 7 (𝜑 → ((𝐸𝑋) − 𝑇) = ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑇))
10910recnd 9947 . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
110101recnd 9947 . . . . . . . 8 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
11115recnd 9947 . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
112109, 110, 111addsubassd 10291 . . . . . . 7 (𝜑 → ((𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇)))
11399zcnd 11359 . . . . . . . . 9 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
114113, 111mulsubfacd 10371 . . . . . . . 8 (𝜑 → (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
115114oveq2d 6565 . . . . . . 7 (𝜑 → (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) − 𝑇)) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
116108, 112, 1153eqtrd 2648 . . . . . 6 (𝜑 → ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
117116adantr 480 . . . . 5 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
118 oveq1 6556 . . . . . . . . 9 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (𝑘 · 𝑇) = (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))
119118oveq2d 6565 . . . . . . . 8 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (𝑋 + (𝑘 · 𝑇)) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))
120119eqeq2d 2620 . . . . . . 7 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → (((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)) ↔ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇))))
121120anbi2d 736 . . . . . 6 (𝑘 = ((⌊‘((𝐵𝑋) / 𝑇)) − 1) → ((((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))))
122121rspcev 3282 . . . . 5 ((((⌊‘((𝐵𝑋) / 𝑇)) − 1) ∈ ℤ ∧ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (((⌊‘((𝐵𝑋) / 𝑇)) − 1) · 𝑇)))) → ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
12325, 85, 117, 122syl12anc 1316 . . . 4 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
12467, 69oveq12d 6567 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘0)[,)(𝑄‘(0 + 1))))
125124eleq2d 2673 . . . . . . 7 (𝑖 = 0 → (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ ((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1)))))
126125anbi1d 737 . . . . . 6 (𝑖 = 0 → ((((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
127126rexbidv 3034 . . . . 5 (𝑖 = 0 → (∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
128127rspcev 3282 . . . 4 ((0 ∈ (0..^𝑀) ∧ ∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄‘0)[,)(𝑄‘(0 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
1298, 123, 128syl2anc 691 . . 3 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
130 ovex 6577 . . . 4 ((𝐸𝑋) − 𝑇) ∈ V
131 eleq1 2676 . . . . . . . 8 (𝑦 = ((𝐸𝑋) − 𝑇) → (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ ((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
132 eqeq1 2614 . . . . . . . 8 (𝑦 = ((𝐸𝑋) − 𝑇) → (𝑦 = (𝑋 + (𝑘 · 𝑇)) ↔ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))
133131, 132anbi12d 743 . . . . . . 7 (𝑦 = ((𝐸𝑋) − 𝑇) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
1341332rexbidv 3039 . . . . . 6 (𝑦 = ((𝐸𝑋) − 𝑇) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))))
135134anbi2d 736 . . . . 5 (𝑦 = ((𝐸𝑋) − 𝑇) → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ↔ (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇))))))
136135imbi1d 330 . . . 4 (𝑦 = ((𝐸𝑋) − 𝑇) → (((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅) ↔ ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
137 simpr 476 . . . . 5 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
138 nfv 1830 . . . . . . 7 𝑖𝜑
139 nfre1 2988 . . . . . . 7 𝑖𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
140138, 139nfan 1816 . . . . . 6 𝑖(𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
141 nfv 1830 . . . . . . 7 𝑘𝜑
142 nfcv 2751 . . . . . . . 8 𝑘(0..^𝑀)
143 nfre1 2988 . . . . . . . 8 𝑘𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
144142, 143nfrex 2990 . . . . . . 7 𝑘𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))
145141, 144nfan 1816 . . . . . 6 𝑘(𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
146 simp1 1054 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝜑)
147 simp2l 1080 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑖 ∈ (0..^𝑀))
148 simp3l 1082 . . . . . . . . . 10 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
149146, 147, 148jca31 555 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
150 simp2r 1081 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
151 simp3r 1083 . . . . . . . . 9 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → 𝑦 = (𝑋 + (𝑘 · 𝑇)))
152 fourierdlem48.ch . . . . . . . . . 10 (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
153152biimpi 205 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))))
154153simplld 787 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
155154simplld 787 . . . . . . . . . . . . . . . 16 (𝜒𝜑)
156 fourierdlem48.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐷⟶ℝ)
157 frel 5963 . . . . . . . . . . . . . . . 16 (𝐹:𝐷⟶ℝ → Rel 𝐹)
158155, 156, 1573syl 18 . . . . . . . . . . . . . . 15 (𝜒 → Rel 𝐹)
159 resindm 5364 . . . . . . . . . . . . . . . 16 (Rel 𝐹 → (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ (𝑋(,)+∞)))
160159eqcomd 2616 . . . . . . . . . . . . . . 15 (Rel 𝐹 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)))
161158, 160syl 17 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)))
162 fdm 5964 . . . . . . . . . . . . . . . . 17 (𝐹:𝐷⟶ℝ → dom 𝐹 = 𝐷)
163155, 156, 1623syl 18 . . . . . . . . . . . . . . . 16 (𝜒 → dom 𝐹 = 𝐷)
164163ineq2d 3776 . . . . . . . . . . . . . . 15 (𝜒 → ((𝑋(,)+∞) ∩ dom 𝐹) = ((𝑋(,)+∞) ∩ 𝐷))
165164reseq2d 5317 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ ((𝑋(,)+∞) ∩ dom 𝐹)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)))
166161, 165eqtrd 2644 . . . . . . . . . . . . 13 (𝜒 → (𝐹 ↾ (𝑋(,)+∞)) = (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)))
167166oveq1d 6564 . . . . . . . . . . . 12 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) lim 𝑋))
168155, 156syl 17 . . . . . . . . . . . . . . 15 (𝜒𝐹:𝐷⟶ℝ)
169 ax-resscn 9872 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
170169a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → ℝ ⊆ ℂ)
171168, 170fssd 5970 . . . . . . . . . . . . . 14 (𝜒𝐹:𝐷⟶ℂ)
172 inss2 3796 . . . . . . . . . . . . . . 15 ((𝑋(,)+∞) ∩ 𝐷) ⊆ 𝐷
173172a1i 11 . . . . . . . . . . . . . 14 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ 𝐷)
174171, 173fssresd 5984 . . . . . . . . . . . . 13 (𝜒 → (𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)):((𝑋(,)+∞) ∩ 𝐷)⟶ℂ)
175 pnfxr 9971 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
176175a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → +∞ ∈ ℝ*)
177154simplrd 789 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑖 ∈ (0..^𝑀))
17840adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
179 fzofzp1 12431 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
180179adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
181178, 180ffvelrnd 6268 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
182155, 177, 181syl2anc 691 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ)
183153simplrd 789 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑘 ∈ ℤ)
184183zred 11358 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑘 ∈ ℝ)
185155, 15syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑇 ∈ ℝ)
186184, 185remulcld 9949 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑘 · 𝑇) ∈ ℝ)
187182, 186resubcld 10337 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ)
188187rexrd 9968 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
189187ltpnfd 11831 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) < +∞)
190188, 176, 189xrltled 38427 . . . . . . . . . . . . . . 15 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ≤ +∞)
191 iooss2 12082 . . . . . . . . . . . . . . 15 ((+∞ ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ≤ +∞) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ (𝑋(,)+∞))
192176, 190, 191syl2anc 691 . . . . . . . . . . . . . 14 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ (𝑋(,)+∞))
193183adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
194193zcnd 11359 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℂ)
195185recnd 9947 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑇 ∈ ℂ)
196195adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑇 ∈ ℂ)
197194, 196mulneg1d 10362 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (-𝑘 · 𝑇) = -(𝑘 · 𝑇))
198197oveq2d 6565 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
199 elioore 12076 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℝ)
200199recnd 9947 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℂ)
201200adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℂ)
202194, 196mulcld 9939 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℂ)
203201, 202addcld 9938 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℂ)
204203, 202negsubd 10277 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
205201, 202pncand 10272 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑤)
206198, 204, 2053eqtrrd 2649 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
207155adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝜑)
208154simpld 474 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝜑𝑖 ∈ (0..^𝑀)))
209 fourierdlem48.cn . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
210 cncff 22504 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
211 fdm 5964 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
212209, 210, 2113syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
213 ssdmres 5340 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
214212, 213sylibr 223 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
215156, 162syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐹 = 𝐷)
216215adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (0..^𝑀)) → dom 𝐹 = 𝐷)
217214, 216sseqtrd 3604 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
218208, 217syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
219218adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
220 elfzofz 12354 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
221220adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
222178, 221ffvelrnd 6268 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
223155, 177, 222syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑄𝑖) ∈ ℝ)
224223rexrd 9968 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄𝑖) ∈ ℝ*)
225224adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ∈ ℝ*)
226182rexrd 9968 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
227226adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
228199adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℝ)
229193zred 11358 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℝ)
230207, 15syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑇 ∈ ℝ)
231229, 230remulcld 9949 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℝ)
232228, 231readdcld 9948 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℝ)
233223adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ∈ ℝ)
234155, 10syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑋 ∈ ℝ)
235234, 186readdcld 9948 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑋 + (𝑘 · 𝑇)) ∈ ℝ)
236235adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑋 + (𝑘 · 𝑇)) ∈ ℝ)
237152simprbi 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑦 = (𝑋 + (𝑘 · 𝑇)))
238237eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑋 + (𝑘 · 𝑇)) = 𝑦)
239154simprd 478 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
240238, 239eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑋 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
241 icogelb 12096 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝑋 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
242224, 226, 240, 241syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
243242adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) ≤ (𝑋 + (𝑘 · 𝑇)))
244207, 10syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ)
245244rexrd 9968 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ*)
246182adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
247246, 231resubcld 10337 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ)
248247rexrd 9968 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
249 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
250 ioogtlb 38564 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 < 𝑤)
251245, 248, 249, 250syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 < 𝑤)
252244, 228, 231, 251ltadd1dd 10517 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑋 + (𝑘 · 𝑇)) < (𝑤 + (𝑘 · 𝑇)))
253233, 236, 232, 243, 252lelttrd 10074 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑄𝑖) < (𝑤 + (𝑘 · 𝑇)))
254 iooltub 38582 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
255245, 248, 249, 254syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
256228, 247, 231, 255ltadd1dd 10517 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) < (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)))
257182recnd 9947 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℂ)
258186recnd 9947 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑘 · 𝑇) ∈ ℂ)
259257, 258npcand 10275 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)) = (𝑄‘(𝑖 + 1)))
260259adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)) = (𝑄‘(𝑖 + 1)))
261256, 260breqtrd 4609 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) < (𝑄‘(𝑖 + 1)))
262225, 227, 232, 253, 261eliood 38567 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
263219, 262sseldd 3569 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷)
264193znegcld 11360 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -𝑘 ∈ ℤ)
265 ovex 6577 . . . . . . . . . . . . . . . . . . 19 (𝑤 + (𝑘 · 𝑇)) ∈ V
266 eleq1 2676 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥𝐷 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷))
2672663anbi2d 1396 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ)))
268 oveq1 6556 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥 + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
269268eleq1d 2672 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷))
270267, 269imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)))
271 negex 10158 . . . . . . . . . . . . . . . . . . . 20 -𝑘 ∈ V
272 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = -𝑘 → (𝑗 ∈ ℤ ↔ -𝑘 ∈ ℤ))
2732723anbi3d 1397 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → ((𝜑𝑥𝐷𝑗 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ)))
274 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 = -𝑘 → (𝑗 · 𝑇) = (-𝑘 · 𝑇))
275274oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = -𝑘 → (𝑥 + (𝑗 · 𝑇)) = (𝑥 + (-𝑘 · 𝑇)))
276275eleq1d 2672 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → ((𝑥 + (𝑗 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷))
277273, 276imbi12d 333 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = -𝑘 → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)))
278 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑘 ∈ ℤ ↔ 𝑗 ∈ ℤ))
2792783anbi3d 1397 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷𝑗 ∈ ℤ)))
280 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑗 → (𝑘 · 𝑇) = (𝑗 · 𝑇))
281280oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑗 → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + (𝑗 · 𝑇)))
282281eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷))
283279, 282imbi12d 333 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷)))
284 fourierdlem48.dper . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
285283, 284chvarv 2251 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷)
286271, 277, 285vtocl 3232 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
287265, 270, 286vtocl 3232 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
288207, 263, 264, 287syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
289206, 288eqeltrd 2688 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤𝐷)
290289ralrimiva 2949 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
291 dfss3 3558 . . . . . . . . . . . . . . 15 ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷 ↔ ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
292290, 291sylibr 223 . . . . . . . . . . . . . 14 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
293192, 292ssind 3799 . . . . . . . . . . . . 13 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ((𝑋(,)+∞) ∩ 𝐷))
294 ioosscn 38563 . . . . . . . . . . . . . 14 (𝑋(,)+∞) ⊆ ℂ
295 ssinss1 3803 . . . . . . . . . . . . . 14 ((𝑋(,)+∞) ⊆ ℂ → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℂ)
296294, 295mp1i 13 . . . . . . . . . . . . 13 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℂ)
297 eqid 2610 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
298 eqid 2610 . . . . . . . . . . . . 13 ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
299234rexrd 9968 . . . . . . . . . . . . . . 15 (𝜒𝑋 ∈ ℝ*)
300234leidd 10473 . . . . . . . . . . . . . . 15 (𝜒𝑋𝑋)
301237oveq1d 6564 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑦 − (𝑘 · 𝑇)) = ((𝑋 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
302234recnd 9947 . . . . . . . . . . . . . . . . . 18 (𝜒𝑋 ∈ ℂ)
303302, 258pncand 10272 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝑋 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑋)
304301, 303eqtr2d 2645 . . . . . . . . . . . . . . . 16 (𝜒𝑋 = (𝑦 − (𝑘 · 𝑇)))
305 icossre 12125 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) ∈ ℝ ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*) → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
306223, 226, 305syl2anc 691 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ⊆ ℝ)
307306, 239sseldd 3569 . . . . . . . . . . . . . . . . 17 (𝜒𝑦 ∈ ℝ)
308 icoltub 38579 . . . . . . . . . . . . . . . . . 18 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → 𝑦 < (𝑄‘(𝑖 + 1)))
309224, 226, 239, 308syl3anc 1318 . . . . . . . . . . . . . . . . 17 (𝜒𝑦 < (𝑄‘(𝑖 + 1)))
310307, 182, 186, 309ltsub1dd 10518 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑦 − (𝑘 · 𝑇)) < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
311304, 310eqbrtrd 4605 . . . . . . . . . . . . . . 15 (𝜒𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
312299, 188, 299, 300, 311elicod 12095 . . . . . . . . . . . . . 14 (𝜒𝑋 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
313 snunioo1 38585 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋}) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
314299, 188, 311, 313syl3anc 1318 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋}) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
315314fveq2d 6107 . . . . . . . . . . . . . . 15 (𝜒 → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})) = ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
316297cnfldtop 22397 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ Top
317 ovex 6577 . . . . . . . . . . . . . . . . . . . 20 (𝑋(,)+∞) ∈ V
318317inex1 4727 . . . . . . . . . . . . . . . . . . 19 ((𝑋(,)+∞) ∩ 𝐷) ∈ V
319 snex 4835 . . . . . . . . . . . . . . . . . . 19 {𝑋} ∈ V
320318, 319unex 6854 . . . . . . . . . . . . . . . . . 18 (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V
321 resttop 20774 . . . . . . . . . . . . . . . . . 18 (((TopOpen‘ℂfld) ∈ Top ∧ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
322316, 320, 321mp2an 704 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top
323322a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
324 retop 22375 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) ∈ Top
325324a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (topGen‘ran (,)) ∈ Top)
326320a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V)
327 iooretop 22379 . . . . . . . . . . . . . . . . . . 19 (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,))
328327a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,)))
329 elrestr 15912 . . . . . . . . . . . . . . . . . 18 (((topGen‘ran (,)) ∈ Top ∧ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∈ V ∧ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ (topGen‘ran (,))) → ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
330325, 326, 328, 329syl3anc 1318 . . . . . . . . . . . . . . . . 17 (𝜒 → ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
331 mnfxr 9975 . . . . . . . . . . . . . . . . . . . . . 22 -∞ ∈ ℝ*
332331a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ ∈ ℝ*)
333188adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
334 icossre 12125 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋 ∈ ℝ ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*) → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℝ)
335234, 188, 334syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℝ)
336335sselda 3568 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ ℝ)
337336mnfltd 11834 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ < 𝑥)
338299adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋 ∈ ℝ*)
339 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
340 icoltub 38579 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
341338, 333, 339, 340syl3anc 1318 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
342332, 333, 336, 337, 341eliood 38567 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
343 vsnid 4156 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥 ∈ {𝑥}
344343a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑋𝑥 ∈ {𝑥})
345 sneq 4135 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑋 → {𝑥} = {𝑋})
346344, 345eleqtrd 2690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑋𝑥 ∈ {𝑋})
347 elun2 3743 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ {𝑋} → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
348346, 347syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑋𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
349348adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
350299ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ*)
351175a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → +∞ ∈ ℝ*)
352336adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ℝ)
353234ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ)
354 icogelb 12096 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑋 ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋𝑥)
355338, 333, 339, 354syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑋𝑥)
356355adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
357 neqne 2790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 = 𝑋𝑥𝑋)
358357adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝑋)
359353, 352, 356, 358leneltd 10070 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑋 < 𝑥)
360352ltpnfd 11831 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < +∞)
361350, 351, 352, 359, 360eliood 38567 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)+∞))
362183zcnd 11359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜒𝑘 ∈ ℂ)
363362, 195mulneg1d 10362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜒 → (-𝑘 · 𝑇) = -(𝑘 · 𝑇))
364363oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜒 → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
365364adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)))
366 ioosscn 38563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℂ
367366sseli 3564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑤 ∈ ℂ)
368367adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 ∈ ℂ)
369258adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℂ)
370368, 369addcld 9938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℂ)
371370, 369negsubd 10277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + -(𝑘 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)))
372368, 369pncand 10272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) − (𝑘 · 𝑇)) = 𝑤)
373365, 371, 3723eqtrrd 2649 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤 = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
374186adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑘 · 𝑇) ∈ ℝ)
375228, 374readdcld 9948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ℝ)
376225, 227, 375, 253, 261eliood 38567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
377219, 376sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷)
3782723anbi3d 1397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = -𝑘 → ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ)))
379274oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = -𝑘 → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)))
380379eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = -𝑘 → (((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷))
381378, 380imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑗 = -𝑘 → (((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)))
3822663anbi2d 1396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝜑𝑥𝐷𝑗 ∈ ℤ) ↔ (𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ)))
383 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (𝑥 + (𝑗 · 𝑇)) = ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)))
384383eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → ((𝑥 + (𝑗 · 𝑇)) ∈ 𝐷 ↔ ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷))
385382, 384imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = (𝑤 + (𝑘 · 𝑇)) → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝑥 + (𝑗 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷)))
386265, 385, 285vtocl 3232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷𝑗 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (𝑗 · 𝑇)) ∈ 𝐷)
387271, 381, 386vtocl 3232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ∧ -𝑘 ∈ ℤ) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
388207, 377, 264, 387syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑤 + (𝑘 · 𝑇)) + (-𝑘 · 𝑇)) ∈ 𝐷)
389373, 388eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑤𝐷)
390389ralrimiva 2949 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → ∀𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤𝐷)
391390, 291sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
392391ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ 𝐷)
393188ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
394341adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
395350, 393, 352, 359, 394eliood 38567 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
396392, 395sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝐷)
397361, 396elind 3760 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
398 elun1 3742 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
399397, 398syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
400349, 399pm2.61dan 828 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
401342, 400elind 3760 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
402299adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑋 ∈ ℝ*)
403188adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
404 elinel1 3761 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
405 elioore 12076 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → 𝑥 ∈ ℝ)
406404, 405syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ)
407406rexrd 9968 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ*)
408407adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ ℝ*)
409 elinel2 3762 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
410234adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 = 𝑋) → 𝑋 ∈ ℝ)
41188eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑋𝑋 = 𝑥)
412411adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 = 𝑋) → 𝑋 = 𝑥)
413410, 412eqled 10019 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑥 = 𝑋) → 𝑋𝑥)
414413adantlr 747 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ 𝑥 = 𝑋) → 𝑋𝑥)
415 simpll 786 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝜒)
416 simplr 788 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))
417 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥 = 𝑋 → ¬ 𝑥 = 𝑋)
418 velsn 4141 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋)
419417, 418sylnibr 318 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥 = 𝑋 → ¬ 𝑥 ∈ {𝑋})
420419adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → ¬ 𝑥 ∈ {𝑋})
421 elunnel2 38221 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
422416, 420, 421syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷))
423 elinel1 3761 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ((𝑋(,)+∞) ∩ 𝐷) → 𝑥 ∈ (𝑋(,)+∞))
424422, 423syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (𝑋(,)+∞))
425234adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 ∈ ℝ)
426 elioore 12076 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (𝑋(,)+∞) → 𝑥 ∈ ℝ)
427426adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑥 ∈ ℝ)
428299adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 ∈ ℝ*)
429175a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → +∞ ∈ ℝ*)
430 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑥 ∈ (𝑋(,)+∞))
431 ioogtlb 38564 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑋 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝑋(,)+∞)) → 𝑋 < 𝑥)
432428, 429, 430, 431syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋 < 𝑥)
433425, 427, 432ltled 10064 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑥 ∈ (𝑋(,)+∞)) → 𝑋𝑥)
434415, 424, 433syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
435414, 434pm2.61dan 828 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) → 𝑋𝑥)
436409, 435sylan2 490 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑋𝑥)
437331a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → -∞ ∈ ℝ*)
438188adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*)
439 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
440 iooltub 38582 . . . . . . . . . . . . . . . . . . . . . 22 ((-∞ ∈ ℝ* ∧ ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) ∈ ℝ*𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
441437, 438, 439, 440syl3anc 1318 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑥 ∈ (-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
442404, 441sylan2 490 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 < ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
443402, 403, 408, 436, 442elicod 12095 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
444401, 443impbida 873 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑥 ∈ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ↔ 𝑥 ∈ ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))))
445444eqrdv 2608 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((-∞(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∩ (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
446 ioossre 12106 . . . . . . . . . . . . . . . . . . . 20 (𝑋(,)+∞) ⊆ ℝ
447 ssinss1 3803 . . . . . . . . . . . . . . . . . . . 20 ((𝑋(,)+∞) ⊆ ℝ → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℝ)
448446, 447mp1i 13 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝑋(,)+∞) ∩ 𝐷) ⊆ ℝ)
449234snssd 4281 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑋} ⊆ ℝ)
450448, 449unssd 3751 . . . . . . . . . . . . . . . . . 18 (𝜒 → (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
451 eqid 2610 . . . . . . . . . . . . . . . . . . 19 (topGen‘ran (,)) = (topGen‘ran (,))
452297, 451tgiooss 38580 . . . . . . . . . . . . . . . . . 18 ((((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
453450, 452syl 17 . . . . . . . . . . . . . . . . 17 (𝜒 → ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
454330, 445, 4533eltr4d 2703 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))
455 isopn3i 20696 . . . . . . . . . . . . . . . 16 ((((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})) ∈ Top ∧ (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∈ ((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋}))) → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
456323, 454, 455syl2anc 691 . . . . . . . . . . . . . . 15 (𝜒 → ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘(𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
457315, 456eqtr2d 2645 . . . . . . . . . . . . . 14 (𝜒 → (𝑋[,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})))
458312, 457eleqtrd 2690 . . . . . . . . . . . . 13 (𝜒𝑋 ∈ ((int‘((TopOpen‘ℂfld) ↾t (((𝑋(,)+∞) ∩ 𝐷) ∪ {𝑋})))‘((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∪ {𝑋})))
459174, 293, 296, 297, 298, 458limcres 23456 . . . . . . . . . . . 12 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) lim 𝑋))
460293resabs1d 5348 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) = (𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
461460oveq1d 6564 . . . . . . . . . . . . 13 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
462169a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℝ ⊆ ℂ)
463156, 462fssd 5970 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:𝐷⟶ℂ)
464215feq2d 5944 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝐷⟶ℂ))
465463, 464mpbird 246 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:dom 𝐹⟶ℂ)
466155, 465syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒𝐹:dom 𝐹⟶ℂ)
467466adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
468366a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ ℂ)
469391, 163sseqtr4d 3605 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ dom 𝐹)
470469adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ⊆ dom 𝐹)
471258adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → (𝑘 · 𝑇) ∈ ℂ)
472 eqid 2610 . . . . . . . . . . . . . . . . 17 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
473 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑤 → (𝑧 = (𝑥 + (𝑘 · 𝑇)) ↔ 𝑤 = (𝑥 + (𝑘 · 𝑇))))
474473rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇)) ↔ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇))))
475474elrab 3331 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ↔ (𝑤 ∈ ℂ ∧ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇))))
476475simprbi 479 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} → ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)))
477476adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)))
478 nfv 1830 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥𝜒
479 nfre1 2988 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))
480 nfcv 2751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥
481479, 480nfrab 3100 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥{𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
482481nfcri 2745 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}
483478, 482nfan 1816 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))})
484 nfv 1830 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 𝑤𝐷
485 simp3 1056 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → 𝑤 = (𝑥 + (𝑘 · 𝑇)))
486 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑥 → (𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ↔ 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
487486anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑥 → ((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) ↔ (𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))))
488 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑤 = 𝑥 → (𝑤 + (𝑘 · 𝑇)) = (𝑥 + (𝑘 · 𝑇)))
489488eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 = 𝑥 → ((𝑤 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷))
490487, 489imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 = 𝑥 → (((𝜒𝑤 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑤 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)))
491490, 263chvarv 2251 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
4924913adant3 1074 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
493485, 492eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) ∧ 𝑤 = (𝑥 + (𝑘 · 𝑇))) → 𝑤𝐷)
4944933exp 1256 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → (𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷)))
495494adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → (𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) → (𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷)))
496483, 484, 495rexlimd 3008 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → (∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑤 = (𝑥 + (𝑘 · 𝑇)) → 𝑤𝐷))
497477, 496mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) → 𝑤𝐷)
498497ralrimiva 2949 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}𝑤𝐷)
499 dfss3 3558 . . . . . . . . . . . . . . . . . . . 20 ({𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ 𝐷 ↔ ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}𝑤𝐷)
500498, 499sylibr 223 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ 𝐷)
501500, 163sseqtr4d 3605 . . . . . . . . . . . . . . . . . 18 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ dom 𝐹)
502501adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} ⊆ dom 𝐹)
503155adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝜑)
504391sselda 3568 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑥𝐷)
505183adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → 𝑘 ∈ ℤ)
506 fourierdlem48.per . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
507503, 504, 505, 506syl3anc 1318 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
508507adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) ∧ 𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
509 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
510467, 468, 470, 471, 472, 502, 508, 509limcperiod 38695 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))))
511259eqcomd 2616 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄‘(𝑖 + 1)) = (((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇)))
512237, 511oveq12d 6567 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) = ((𝑋 + (𝑘 · 𝑇))(,)(((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇))))
513234, 187, 186iooshift 38595 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑋 + (𝑘 · 𝑇))(,)(((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) + (𝑘 · 𝑇))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))})
514512, 513eqtr2d 2645 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))} = (𝑦(,)(𝑄‘(𝑖 + 1))))
515514reseq2d 5317 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) = (𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))))
516515, 238oveq12d 6567 . . . . . . . . . . . . . . . . 17 (𝜒 → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
517516adantr 480 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))𝑧 = (𝑥 + (𝑘 · 𝑇))}) lim (𝑋 + (𝑘 · 𝑇))) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
518510, 517eleqtrd 2690 . . . . . . . . . . . . . . 15 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋)) → 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
519466adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝐹:dom 𝐹⟶ℂ)
520 ioosscn 38563 . . . . . . . . . . . . . . . . . 18 (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ
521520a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ℂ)
522 icogelb 12096 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ≤ 𝑦)
523224, 226, 239, 522syl3anc 1318 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄𝑖) ≤ 𝑦)
524 iooss1 12081 . . . . . . . . . . . . . . . . . . . . 21 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄𝑖) ≤ 𝑦) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
525224, 523, 524syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
526525, 218sstrd 3578 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
527526, 163sseqtr4d 3605 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
528527adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
529362negcld 10258 . . . . . . . . . . . . . . . . . . 19 (𝜒 → -𝑘 ∈ ℂ)
530529, 195mulcld 9939 . . . . . . . . . . . . . . . . . 18 (𝜒 → (-𝑘 · 𝑇) ∈ ℂ)
531530adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (-𝑘 · 𝑇) ∈ ℂ)
532 eqid 2610 . . . . . . . . . . . . . . . . 17 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
533 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑤 → (𝑧 = (𝑥 + (-𝑘 · 𝑇)) ↔ 𝑤 = (𝑥 + (-𝑘 · 𝑇))))
534533rexbidv 3034 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑤 → (∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇)) ↔ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇))))
535534elrab 3331 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ↔ (𝑤 ∈ ℂ ∧ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇))))
536535simprbi 479 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} → ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)))
537536adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)))
538 nfre1 2988 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))
539538, 480nfrab 3100 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥{𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
540539nfcri 2745 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}
541478, 540nfan 1816 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥(𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))})
542 simp3 1056 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → 𝑤 = (𝑥 + (-𝑘 · 𝑇)))
543155adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝜑)
544526sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑥𝐷)
545183adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑘 ∈ ℤ)
546545znegcld 11360 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → -𝑘 ∈ ℤ)
547543, 544, 546, 286syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
5485473adant3 1074 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → (𝑥 + (-𝑘 · 𝑇)) ∈ 𝐷)
549542, 548eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜒𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) ∧ 𝑤 = (𝑥 + (-𝑘 · 𝑇))) → 𝑤𝐷)
5505493exp 1256 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷)))
551550adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → (𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1))) → (𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷)))
552541, 484, 551rexlimd 3008 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → (∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑤 = (𝑥 + (-𝑘 · 𝑇)) → 𝑤𝐷))
553537, 552mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) → 𝑤𝐷)
554553ralrimiva 2949 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}𝑤𝐷)
555 dfss3 3558 . . . . . . . . . . . . . . . . . . . 20 ({𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ 𝐷 ↔ ∀𝑤 ∈ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}𝑤𝐷)
556554, 555sylibr 223 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ 𝐷)
557556, 163sseqtr4d 3605 . . . . . . . . . . . . . . . . . 18 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ dom 𝐹)
558557adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} ⊆ dom 𝐹)
559155ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝜑)
560544adantlr 747 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → 𝑥𝐷)
561546adantlr 747 . . . . . . . . . . . . . . . . . 18 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → -𝑘 ∈ ℤ)
562275fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = -𝑘 → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹‘(𝑥 + (-𝑘 · 𝑇))))
563562eqeq1d 2612 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = -𝑘 → ((𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥)))
564273, 563imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑗 = -𝑘 → (((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))))
565281fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑗 → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + (𝑗 · 𝑇))))
566565eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑗 → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥)))
567279, 566imbi12d 333 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥))))
568567, 506chvarv 2251 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐷𝑗 ∈ ℤ) → (𝐹‘(𝑥 + (𝑗 · 𝑇))) = (𝐹𝑥))
569271, 564, 568vtocl 3232 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷 ∧ -𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))
570559, 560, 561, 569syl3anc 1318 . . . . . . . . . . . . . . . . 17 (((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) ∧ 𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))) → (𝐹‘(𝑥 + (-𝑘 · 𝑇))) = (𝐹𝑥))
571 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
572519, 521, 528, 531, 532, 558, 570, 571limcperiod 38695 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) lim (𝑦 + (-𝑘 · 𝑇))))
573363oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 + (-𝑘 · 𝑇)) = (𝑦 + -(𝑘 · 𝑇)))
574307recnd 9947 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒𝑦 ∈ ℂ)
575574, 258negsubd 10277 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 + -(𝑘 · 𝑇)) = (𝑦 − (𝑘 · 𝑇)))
576304eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑦 − (𝑘 · 𝑇)) = 𝑋)
577573, 575, 5763eqtrd 2648 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑦 + (-𝑘 · 𝑇)) = 𝑋)
578577eqcomd 2616 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑋 = (𝑦 + (-𝑘 · 𝑇)))
579363oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) + -(𝑘 · 𝑇)))
580257, 258negsubd 10277 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ((𝑄‘(𝑖 + 1)) + -(𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))
581579, 580eqtr2d 2645 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → ((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)) = ((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇)))
582578, 581oveq12d 6567 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))) = ((𝑦 + (-𝑘 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇))))
583184renegcld 10336 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → -𝑘 ∈ ℝ)
584583, 185remulcld 9949 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (-𝑘 · 𝑇) ∈ ℝ)
585307, 182, 584iooshift 38595 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑦 + (-𝑘 · 𝑇))(,)((𝑄‘(𝑖 + 1)) + (-𝑘 · 𝑇))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))})
586582, 585eqtr2d 2645 . . . . . . . . . . . . . . . . . . 19 (𝜒 → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
587586adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))} = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇))))
588587reseq2d 5317 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) = (𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))))
589577adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → (𝑦 + (-𝑘 · 𝑇)) = 𝑋)
590588, 589oveq12d 6567 . . . . . . . . . . . . . . . 16 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (𝑦(,)(𝑄‘(𝑖 + 1)))𝑧 = (𝑥 + (-𝑘 · 𝑇))}) lim (𝑦 + (-𝑘 · 𝑇))) = ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
591572, 590eleqtrd 2690 . . . . . . . . . . . . . . 15 ((𝜒𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)) → 𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋))
592518, 591impbida 873 . . . . . . . . . . . . . 14 (𝜒 → (𝑤 ∈ ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) ↔ 𝑤 ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦)))
593592eqrdv 2608 . . . . . . . . . . . . 13 (𝜒 → ((𝐹 ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
594461, 593eqtrd 2644 . . . . . . . . . . . 12 (𝜒 → (((𝐹 ↾ ((𝑋(,)+∞) ∩ 𝐷)) ↾ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑘 · 𝑇)))) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
595167, 459, 5943eqtr2d 2650 . . . . . . . . . . 11 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
596155, 177, 73syl2anc 691 . . . . . . . . . . . . . 14 (𝜒 → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
597155, 177, 209syl2anc 691 . . . . . . . . . . . . . 14 (𝜒 → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
598 fourierdlem48.r . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
599155, 177, 598syl2anc 691 . . . . . . . . . . . . . 14 (𝜒𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
600 eqid 2610 . . . . . . . . . . . . . 14 if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) = if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦))
601 eqid 2610 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ↾t ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) = ((TopOpen‘ℂfld) ↾t ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
602223, 182, 596, 597, 599, 307, 182, 309, 525, 600, 601fourierdlem32 39032 . . . . . . . . . . . . 13 (𝜒 → if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
603525resabs1d 5348 . . . . . . . . . . . . . 14 (𝜒 → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) = (𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))))
604603oveq1d 6564 . . . . . . . . . . . . 13 (𝜒 → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) = ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
605602, 604eleqtrd 2690 . . . . . . . . . . . 12 (𝜒 → if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦))
606 ne0i 3880 . . . . . . . . . . . 12 (if(𝑦 = (𝑄𝑖), 𝑅, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑦)) ∈ ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) → ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) ≠ ∅)
607605, 606syl 17 . . . . . . . . . . 11 (𝜒 → ((𝐹 ↾ (𝑦(,)(𝑄‘(𝑖 + 1)))) lim 𝑦) ≠ ∅)
608595, 607eqnetrd 2849 . . . . . . . . . 10 (𝜒 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
609152, 608sylbir 224 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ ℤ) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
610149, 150, 151, 609syl21anc 1317 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) ∧ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
6116103exp 1256 . . . . . . 7 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
612611adantr 480 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝑖 ∈ (0..^𝑀) ∧ 𝑘 ∈ ℤ) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
613140, 145, 612rexlim2d 38692 . . . . 5 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
614137, 613mpd 15 . . . 4 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
615130, 136, 614vtocl 3232 . . 3 ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (((𝐸𝑋) − 𝑇) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ((𝐸𝑋) − 𝑇) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
6161, 129, 615syl2anc 691 . 2 ((𝜑 ∧ (𝐸𝑋) = 𝐵) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
617 iocssre 12124 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
61858, 9, 617syl2anc 691 . . . . 5 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
619 ovex 6577 . . . . . . . . . . 11 ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V
62092fvmpt2 6200 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V) → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
621619, 620mpan2 703 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
622621oveq2d 6565 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑥 + (𝑍𝑥)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
623622mpteq2ia 4668 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
62486, 623eqtri 2632 . . . . . . 7 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
62513, 9, 16, 12, 624fourierdlem4 39004 . . . . . 6 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
626625, 10ffvelrnd 6268 . . . . 5 (𝜑 → (𝐸𝑋) ∈ (𝐴(,]𝐵))
627618, 626sseldd 3569 . . . 4 (𝜑 → (𝐸𝑋) ∈ ℝ)
628627adantr 480 . . 3 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (𝐸𝑋) ∈ ℝ)
629 simpl 472 . . . 4 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → 𝜑)
630 simpr 476 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ran 𝑄)
631 ffn 5958 . . . . . . . . . . . . . . 15 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
63240, 631syl 17 . . . . . . . . . . . . . 14 (𝜑𝑄 Fn (0...𝑀))
633632ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
634 fvelrnb 6153 . . . . . . . . . . . . 13 (𝑄 Fn (0...𝑀) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
635633, 634syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
636630, 635mpbid 221 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋))
637 1zzd 11285 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ∈ ℤ)
638 elfzelz 12213 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
639638ad2antlr 759 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℤ)
640639zred 11358 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℝ)
641 elfzle1 12215 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
642641ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ 𝑗)
643 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑄𝑗) = (𝐸𝑋) → (𝑄𝑗) = (𝐸𝑋))
644643eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑄𝑗) = (𝐸𝑋) → (𝐸𝑋) = (𝑄𝑗))
645644ad2antlr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = (𝑄𝑗))
646 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 0 → (𝑄𝑗) = (𝑄‘0))
647646adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄𝑗) = (𝑄‘0))
64837simprld 791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
649648simpld 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝑄‘0) = 𝐴)
650649ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄‘0) = 𝐴)
651645, 647, 6503eqtrd 2648 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
652651adantllr 751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
653652adantllr 751 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
65413adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
65558adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
6569rexrd 9968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝐵 ∈ ℝ*)
657656adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
658 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ (𝐴(,]𝐵))
659 iocgtlb 38571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
660655, 657, 658, 659syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
661654, 660gtned 10051 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ≠ 𝐴)
662661neneqd 2787 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ¬ (𝐸𝑋) = 𝐴)
663662ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → ¬ (𝐸𝑋) = 𝐴)
664653, 663pm2.65da 598 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ¬ 𝑗 = 0)
665664neqned 2789 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ≠ 0)
666640, 642, 665ne0gt0d 10053 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 < 𝑗)
667 0zd 11266 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ∈ ℤ)
668 zltp1le 11304 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
669667, 639, 668syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
670666, 669mpbid 221 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 + 1) ≤ 𝑗)
67177, 670syl5eqbr 4618 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ≤ 𝑗)
672 eluz2 11569 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
673637, 639, 671, 672syl3anbrc 1239 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ (ℤ‘1))
674 nnuz 11599 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
675673, 674syl6eleqr 2699 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℕ)
676 nnm1nn0 11211 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
677675, 676syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℕ0)
678677, 42syl6eleq 2698 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (ℤ‘0))
6794ad3antrrr 762 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑀 ∈ ℤ)
680 peano2zm 11297 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
681638, 680syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℤ)
682681zred 11358 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
683638zred 11358 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
684 elfzel2 12211 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
685684zred 11358 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
686683ltm1d 10835 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗)
687 elfzle2 12216 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
688682, 683, 685, 686, 687ltletrd 10076 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
689688ad2antlr 759 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) < 𝑀)
690 elfzo2 12342 . . . . . . . . . . . . . . . 16 ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀))
691678, 679, 689, 690syl3anbrc 1239 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0..^𝑀))
69240ad3antrrr 762 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑄:(0...𝑀)⟶ℝ)
693639, 680syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℤ)
694667, 679, 6933jca 1235 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ))
695677nn0ge0d 11231 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ (𝑗 − 1))
696682, 685, 688ltled 10064 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀)
697696ad2antlr 759 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ≤ 𝑀)
698694, 695, 697jca32 556 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) ∧ (0 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑀)))
699 elfz2 12204 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 − 1) ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ) ∧ (0 ≤ (𝑗 − 1) ∧ (𝑗 − 1) ≤ 𝑀)))
700698, 699sylibr 223 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0...𝑀))
701692, 700ffvelrnd 6268 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ)
702701rexrd 9968 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ*)
70340ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
704703rexrd 9968 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
705704adantlr 747 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
706705adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) ∈ ℝ*)
707618sselda 3568 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ)
708707rexrd 9968 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ*)
709708ad2antrr 758 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
710 simplll 794 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝜑)
711 ovex 6577 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 − 1) ∈ V
712 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀)))
713712anbi2d 736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀))))
714 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑄𝑖) = (𝑄‘(𝑗 − 1)))
715 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1))
716715fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1)))
717714, 716breq12d 4596 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑗 − 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))
718713, 717imbi12d 333 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑗 − 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))))
719711, 718, 73vtocl 3232 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
720710, 691, 719syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
721638zcnd 11359 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
722 1cnd 9935 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ)
723721, 722npcand 10275 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗)
724723eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1))
725724fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑀) → (𝑄𝑗) = (𝑄‘((𝑗 − 1) + 1)))
726725eqcomd 2616 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
727726ad2antlr 759 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
728720, 727breqtrd 4609 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄𝑗))
729 simpr 476 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) = (𝐸𝑋))
730728, 729breqtrd 4609 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸𝑋))
731627leidd 10473 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐸𝑋) ≤ (𝐸𝑋))
732731ad2antrr 758 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝐸𝑋))
733644adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) = (𝑄𝑗))
734732, 733breqtrd 4609 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
735734adantllr 751 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
736702, 706, 709, 730, 735eliocd 38577 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)))
737725oveq2d 6565 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
738737ad2antlr 759 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
739736, 738eleqtrd 2690 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
740714, 716oveq12d 6567 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
741740eleq2d 2673 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 − 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))))
742741rspcev 3282 . . . . . . . . . . . . . . 15 (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
743691, 739, 742syl2anc 691 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
744743ex 449 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
745744adantlr 747 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
746745rexlimdva 3013 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
747636, 746mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
7483ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ)
74940ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
750 iocssicc 12132 . . . . . . . . . . . . . . 15 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
751649eqcomd 2616 . . . . . . . . . . . . . . . 16 (𝜑𝐴 = (𝑄‘0))
752648simprd 478 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑄𝑀) = 𝐵)
753752eqcomd 2616 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑄𝑀))
754751, 753oveq12d 6567 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
755750, 754syl5sseq 3616 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,]𝐵) ⊆ ((𝑄‘0)[,](𝑄𝑀)))
756755sselda 3568 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
757756adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
758 simpr 476 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ¬ (𝐸𝑋) ∈ ran 𝑄)
759 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
760759breq1d 4593 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑄𝑘) < (𝐸𝑋) ↔ (𝑄𝑗) < (𝐸𝑋)))
761760cbvrabv 3172 . . . . . . . . . . . . 13 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}
762761supeq1i 8236 . . . . . . . . . . . 12 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}, ℝ, < )
763748, 749, 757, 758, 762fourierdlem25 39025 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
764 ioossioc 38560 . . . . . . . . . . . . . 14 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))
765764sseli 3564 . . . . . . . . . . . . 13 ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
766765a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
767766reximdva 3000 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
768763, 767mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
769747, 768pm2.61dan 828 . . . . . . . . 9 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
770626, 769mpdan 699 . . . . . . . 8 (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
771 fveq2 6103 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑄𝑖) = (𝑄𝑗))
772 oveq1 6556 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1))
773772fveq2d 6107 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1)))
774771, 773oveq12d 6567 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
775774eleq2d 2673 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
776775cbvrexv 3148 . . . . . . . 8 (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
777770, 776sylib 207 . . . . . . 7 (𝜑 → ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
778777adantr 480 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
779 elfzonn0 12380 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℕ0)
780 1nn0 11185 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
781780a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 1 ∈ ℕ0)
782779, 781nn0addcld 11232 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ ℕ0)
783782, 42syl6eleq 2698 . . . . . . . . . . . 12 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (ℤ‘0))
784783adantr 480 . . . . . . . . . . 11 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (ℤ‘0))
7857843ad2antl2 1217 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (ℤ‘0))
7864ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
7877863ad2antl1 1216 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℤ)
788779nn0red 11229 . . . . . . . . . . . . . 14 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ)
789788adantr 480 . . . . . . . . . . . . 13 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ ℝ)
7907893ad2antl2 1217 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ ℝ)
791 1red 9934 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 1 ∈ ℝ)
792790, 791readdcld 9948 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
793787zred 11358 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ∈ ℝ)
794 elfzop1le2 38443 . . . . . . . . . . . . 13 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ≤ 𝑀)
795794adantr 480 . . . . . . . . . . . 12 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑀)
7967953ad2antl2 1217 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑀)
797 simplr 788 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
798 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑀 = (𝑗 + 1) → (𝑄𝑀) = (𝑄‘(𝑗 + 1)))
799798eqcomd 2616 . . . . . . . . . . . . . . . . 17 (𝑀 = (𝑗 + 1) → (𝑄‘(𝑗 + 1)) = (𝑄𝑀))
800799adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝑄‘(𝑗 + 1)) = (𝑄𝑀))
801752ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝑄𝑀) = 𝐵)
802797, 800, 8013eqtrd 2648 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = 𝐵)
803802adantllr 751 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) = 𝐵)
804 simpllr 795 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → (𝐸𝑋) ≠ 𝐵)
805804neneqd 2787 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) ∧ 𝑀 = (𝑗 + 1)) → ¬ (𝐸𝑋) = 𝐵)
806803, 805pm2.65da 598 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ¬ 𝑀 = (𝑗 + 1))
807806neqned 2789 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ≠ (𝑗 + 1))
8088073ad2antl1 1216 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑀 ≠ (𝑗 + 1))
809792, 793, 796, 808leneltd 10070 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) < 𝑀)
810 elfzo2 12342 . . . . . . . . . 10 ((𝑗 + 1) ∈ (0..^𝑀) ↔ ((𝑗 + 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 + 1) < 𝑀))
811785, 787, 809, 810syl3anbrc 1239 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑗 + 1) ∈ (0..^𝑀))
81240adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
813 fzofzp1 12431 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀))
814813adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀))
815812, 814ffvelrnd 6268 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
816815rexrd 9968 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
817816adantlr 747 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
8188173adant3 1074 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
819818adantr 480 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
820 simpl1l 1105 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝜑)
821820, 40syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑄:(0...𝑀)⟶ℝ)
822 fzofzp1 12431 . . . . . . . . . . . . 13 ((𝑗 + 1) ∈ (0..^𝑀) → ((𝑗 + 1) + 1) ∈ (0...𝑀))
823811, 822syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ((𝑗 + 1) + 1) ∈ (0...𝑀))
824821, 823ffvelrnd 6268 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘((𝑗 + 1) + 1)) ∈ ℝ)
825824rexrd 9968 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘((𝑗 + 1) + 1)) ∈ ℝ*)
826627rexrd 9968 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑋) ∈ ℝ*)
827826ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8288273ad2antl1 1216 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
829815leidd 10473 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ≤ (𝑄‘(𝑗 + 1)))
830829adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝑄‘(𝑗 + 1)))
831 id 22 . . . . . . . . . . . . . . 15 ((𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
832831eqcomd 2616 . . . . . . . . . . . . . 14 ((𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝑄‘(𝑗 + 1)) = (𝐸𝑋))
833832adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) = (𝐸𝑋))
834830, 833breqtrd 4609 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
835834adantllr 751 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
8368353adantl3 1212 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≤ (𝐸𝑋))
837 simpr 476 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
838 simpr 476 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) = (𝑄‘(𝑗 + 1)))
839 ovex 6577 . . . . . . . . . . . . . 14 (𝑗 + 1) ∈ V
840 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 + 1) ∈ (0..^𝑀)))
841840anbi2d 736 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 + 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀))))
842 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑄𝑖) = (𝑄‘(𝑗 + 1)))
843 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 + 1) → (𝑖 + 1) = ((𝑗 + 1) + 1))
844843fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 + 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 + 1) + 1)))
845842, 844breq12d 4596 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗 + 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1))))
846841, 845imbi12d 333 . . . . . . . . . . . . . 14 (𝑖 = (𝑗 + 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))))
847839, 846, 73vtocl 3232 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))
848847adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) < (𝑄‘((𝑗 + 1) + 1)))
849838, 848eqbrtrd 4605 . . . . . . . . . . 11 (((𝜑 ∧ (𝑗 + 1) ∈ (0..^𝑀)) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘((𝑗 + 1) + 1)))
850820, 811, 837, 849syl21anc 1317 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘((𝑗 + 1) + 1)))
851819, 825, 828, 836, 850elicod 12095 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1))))
852842, 844oveq12d 6567 . . . . . . . . . . 11 (𝑖 = (𝑗 + 1) → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1))))
853852eleq2d 2673 . . . . . . . . . 10 (𝑖 = (𝑗 + 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1)))))
854853rspcev 3282 . . . . . . . . 9 (((𝑗 + 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 + 1))[,)(𝑄‘((𝑗 + 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
855811, 851, 854syl2anc 691 . . . . . . . 8 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
856 simpl2 1058 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → 𝑗 ∈ (0..^𝑀))
857 id 22 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
8588573adant1r 1311 . . . . . . . . . 10 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))))
859 elfzofz 12354 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ (0...𝑀))
860859adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀))
861812, 860ffvelrnd 6268 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ)
862861rexrd 9968 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀)) → (𝑄𝑗) ∈ ℝ*)
863862adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ∈ ℝ*)
8648633adantl3 1212 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ∈ ℝ*)
865816adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
8668653adantl3 1212 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
867826adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8688673ad2antl1 1216 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ*)
8698613adant3 1074 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ∈ ℝ)
8706273ad2ant1 1075 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ∈ ℝ)
8718623adant3 1074 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ∈ ℝ*)
8728163adant3 1074 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄‘(𝑗 + 1)) ∈ ℝ*)
873 simp3 1056 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))))
874 iocgtlb 38571 . . . . . . . . . . . . . 14 (((𝑄𝑗) ∈ ℝ* ∧ (𝑄‘(𝑗 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) < (𝐸𝑋))
875871, 872, 873, 874syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) < (𝐸𝑋))
876869, 870, 875ltled 10064 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝑄𝑗) ≤ (𝐸𝑋))
877876adantr 480 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄𝑗) ≤ (𝐸𝑋))
878870adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ℝ)
879815adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0..^𝑀)) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
8808793adantl3 1212 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ∈ ℝ)
881 iocleub 38572 . . . . . . . . . . . . . 14 (((𝑄𝑗) ∈ ℝ* ∧ (𝑄‘(𝑗 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
882871, 872, 873, 881syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
883882adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ≤ (𝑄‘(𝑗 + 1)))
884 neqne 2790 . . . . . . . . . . . . . 14 (¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝐸𝑋) ≠ (𝑄‘(𝑗 + 1)))
885884necomd 2837 . . . . . . . . . . . . 13 (¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1)) → (𝑄‘(𝑗 + 1)) ≠ (𝐸𝑋))
886885adantl 481 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝑄‘(𝑗 + 1)) ≠ (𝐸𝑋))
887878, 880, 883, 886leneltd 10070 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) < (𝑄‘(𝑗 + 1)))
888864, 866, 868, 877, 887elicod 12095 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
889858, 888sylan 487 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
890771, 773oveq12d 6567 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1))))
891890eleq2d 2673 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1)))))
892891rspcev 3282 . . . . . . . . 9 ((𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)[,)(𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
893856, 889, 892syl2anc 691 . . . . . . . 8 ((((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) ∧ ¬ (𝐸𝑋) = (𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
894855, 893pm2.61dan 828 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
895894rexlimdv3a 3015 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (∃𝑗 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑗)(,](𝑄‘(𝑗 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
896778, 895mpd 15 . . . . 5 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
897 simpr 476 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))))
898 oveq1 6556 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
899898oveq2d 6565 . . . . . . . . . . . 12 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑋 + (𝑘 · 𝑇)) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
900899eqeq2d 2620 . . . . . . . . . . 11 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)) ↔ (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
901900rspcev 3282 . . . . . . . . . 10 (((⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ ∧ (𝐸𝑋) = (𝑋 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
90299, 107, 901syl2anc 691 . . . . . . . . 9 (𝜑 → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
903902ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))
904 r19.42v 3073 . . . . . . . 8 (∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))) ↔ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ ∃𝑘 ∈ ℤ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
905897, 903, 904sylanbrc 695 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
906905ex 449 . . . . . 6 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
907906reximdv 2999 . . . . 5 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
908896, 907mpd 15 . . . 4 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
909629, 908jca 553 . . 3 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
910 eleq1 2676 . . . . . . . 8 (𝑦 = (𝐸𝑋) → (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1)))))
911 eqeq1 2614 . . . . . . . 8 (𝑦 = (𝐸𝑋) → (𝑦 = (𝑋 + (𝑘 · 𝑇)) ↔ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))
912910, 911anbi12d 743 . . . . . . 7 (𝑦 = (𝐸𝑋) → ((𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
9139122rexbidv 3039 . . . . . 6 (𝑦 = (𝐸𝑋) → (∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇))) ↔ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))))
914913anbi2d 736 . . . . 5 (𝑦 = (𝐸𝑋) → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) ↔ (𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇))))))
915914imbi1d 330 . . . 4 (𝑦 = (𝐸𝑋) → (((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ (𝑦 ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ 𝑦 = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅) ↔ ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)))
916915, 614vtoclg 3239 . . 3 ((𝐸𝑋) ∈ ℝ → ((𝜑 ∧ ∃𝑖 ∈ (0..^𝑀)∃𝑘 ∈ ℤ ((𝐸𝑋) ∈ ((𝑄𝑖)[,)(𝑄‘(𝑖 + 1))) ∧ (𝐸𝑋) = (𝑋 + (𝑘 · 𝑇)))) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))
917628, 909, 916sylc 63 . 2 ((𝜑 ∧ (𝐸𝑋) ≠ 𝐵) → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
918616, 917pm2.61dane 2869 1 (𝜑 → ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cun 3538  cin 3539  wss 3540  c0 3874  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cres 5040  Rel wrel 5043   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  supcsup 8229  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cuz 11563  (,)cioo 12046  (,]cioc 12047  [,)cico 12048  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  cfl 12453  t crest 15904  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567  Topctop 20517  intcnt 20631  cnccncf 22487   lim climc 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-ntr 20634  df-cn 20841  df-cnp 20842  df-xms 21935  df-ms 21936  df-cncf 22489  df-limc 23436
This theorem is referenced by:  fourierdlem94  39093  fourierdlem113  39112
  Copyright terms: Public domain W3C validator