Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressioosup Structured version   Visualization version   GIF version

Theorem ressioosup 38629
Description: If the supremum does not belong to a set of reals, the set is a subset of the unbounded below, right-open interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ressioosup.a (𝜑𝐴 ⊆ ℝ)
ressioosup.s 𝑆 = sup(𝐴, ℝ*, < )
ressioosup.n (𝜑 → ¬ 𝑆𝐴)
ressioosup.i 𝐼 = (-∞(,)𝑆)
Assertion
Ref Expression
ressioosup (𝜑𝐴𝐼)

Proof of Theorem ressioosup
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 9975 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 ((𝜑𝑥𝐴) → -∞ ∈ ℝ*)
3 ressioosup.s . . . . . 6 𝑆 = sup(𝐴, ℝ*, < )
4 ressioosup.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
5 ressxr 9962 . . . . . . . . . 10 ℝ ⊆ ℝ*
65a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℝ*)
74, 6sstrd 3578 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
87adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
98supxrcld 38321 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
103, 9syl5eqel 2692 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 ∈ ℝ*)
114adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
12 simpr 476 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
1311, 12sseldd 3569 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
1413mnfltd 11834 . . . . 5 ((𝜑𝑥𝐴) → -∞ < 𝑥)
157sselda 3568 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
16 supxrub 12026 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
178, 12, 16syl2anc 691 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
183a1i 11 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑆 = sup(𝐴, ℝ*, < ))
1918eqcomd 2616 . . . . . . 7 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) = 𝑆)
2017, 19breqtrd 4609 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝑆)
21 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑆𝑥 = 𝑆)
2221eqcomd 2616 . . . . . . . . . . 11 (𝑥 = 𝑆𝑆 = 𝑥)
2322adantl 481 . . . . . . . . . 10 ((𝑥𝐴𝑥 = 𝑆) → 𝑆 = 𝑥)
24 simpl 472 . . . . . . . . . 10 ((𝑥𝐴𝑥 = 𝑆) → 𝑥𝐴)
2523, 24eqeltrd 2688 . . . . . . . . 9 ((𝑥𝐴𝑥 = 𝑆) → 𝑆𝐴)
2625adantll 746 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → 𝑆𝐴)
27 ressioosup.n . . . . . . . . 9 (𝜑 → ¬ 𝑆𝐴)
2827ad2antrr 758 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑥 = 𝑆) → ¬ 𝑆𝐴)
2926, 28pm2.65da 598 . . . . . . 7 ((𝜑𝑥𝐴) → ¬ 𝑥 = 𝑆)
3029neqned 2789 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝑆)
3115, 10, 20, 30xrleneltd 38480 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 < 𝑆)
322, 10, 13, 14, 31eliood 38567 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (-∞(,)𝑆))
33 ressioosup.i . . . 4 𝐼 = (-∞(,)𝑆)
3432, 33syl6eleqr 2699 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐼)
3534ralrimiva 2949 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐼)
36 dfss3 3558 . 2 (𝐴𝐼 ↔ ∀𝑥𝐴 𝑥𝐼)
3735, 36sylibr 223 1 (𝜑𝐴𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540   class class class wbr 4583  (class class class)co 6549  supcsup 8229  cr 9814  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  (,)cioo 12046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-ioo 12050
This theorem is referenced by:  pimdecfgtioo  39604  pimincfltioo  39605
  Copyright terms: Public domain W3C validator