Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem43 Structured version   Visualization version   GIF version

Theorem fourierdlem43 39043
 Description: 𝐾 is a real function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem43.1 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
Assertion
Ref Expression
fourierdlem43 𝐾:(-π[,]π)⟶ℝ

Proof of Theorem fourierdlem43
StepHypRef Expression
1 fourierdlem43.1 . 2 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
2 1red 9934 . . 3 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 = 0) → 1 ∈ ℝ)
3 pire 24014 . . . . . . . 8 π ∈ ℝ
43a1i 11 . . . . . . 7 (𝑠 ∈ (-π[,]π) → π ∈ ℝ)
54renegcld 10336 . . . . . 6 (𝑠 ∈ (-π[,]π) → -π ∈ ℝ)
6 id 22 . . . . . 6 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ (-π[,]π))
7 eliccre 38575 . . . . . 6 ((-π ∈ ℝ ∧ π ∈ ℝ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
85, 4, 6, 7syl3anc 1318 . . . . 5 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
98adantr 480 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ℝ)
10 2re 10967 . . . . . 6 2 ∈ ℝ
1110a1i 11 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 2 ∈ ℝ)
129rehalfcld 11156 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝑠 / 2) ∈ ℝ)
1312resincld 14712 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ∈ ℝ)
1411, 13remulcld 9949 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
15 2cnd 10970 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 2 ∈ ℂ)
1613recnd 9947 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ∈ ℂ)
17 2ne0 10990 . . . . . 6 2 ≠ 0
1817a1i 11 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 2 ≠ 0)
19 0xr 9965 . . . . . . . . . 10 0 ∈ ℝ*
2019a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 0 ∈ ℝ*)
2110, 3remulcli 9933 . . . . . . . . . . 11 (2 · π) ∈ ℝ
2221rexri 9976 . . . . . . . . . 10 (2 · π) ∈ ℝ*
2322a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → (2 · π) ∈ ℝ*)
248adantr 480 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 𝑠 ∈ ℝ)
25 simpr 476 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 0 < 𝑠)
2621a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,]π) → (2 · π) ∈ ℝ)
275rexrd 9968 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) → -π ∈ ℝ*)
284rexrd 9968 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,]π) → π ∈ ℝ*)
29 iccleub 12100 . . . . . . . . . . . 12 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π[,]π)) → 𝑠 ≤ π)
3027, 28, 6, 29syl3anc 1318 . . . . . . . . . . 11 (𝑠 ∈ (-π[,]π) → 𝑠 ≤ π)
31 pirp 24017 . . . . . . . . . . . . 13 π ∈ ℝ+
32 2timesgt 38441 . . . . . . . . . . . . 13 (π ∈ ℝ+ → π < (2 · π))
3331, 32ax-mp 5 . . . . . . . . . . . 12 π < (2 · π)
3433a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,]π) → π < (2 · π))
358, 4, 26, 30, 34lelttrd 10074 . . . . . . . . . 10 (𝑠 ∈ (-π[,]π) → 𝑠 < (2 · π))
3635adantr 480 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 𝑠 < (2 · π))
3720, 23, 24, 25, 36eliood 38567 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → 𝑠 ∈ (0(,)(2 · π)))
38 sinaover2ne0 38751 . . . . . . . 8 (𝑠 ∈ (0(,)(2 · π)) → (sin‘(𝑠 / 2)) ≠ 0)
3937, 38syl 17 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ 0 < 𝑠) → (sin‘(𝑠 / 2)) ≠ 0)
4039adantlr 747 . . . . . 6 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ 0 < 𝑠) → (sin‘(𝑠 / 2)) ≠ 0)
418ad2antrr 758 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 ∈ ℝ)
42 iccgelb 12101 . . . . . . . . . 10 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π[,]π)) → -π ≤ 𝑠)
4327, 28, 6, 42syl3anc 1318 . . . . . . . . 9 (𝑠 ∈ (-π[,]π) → -π ≤ 𝑠)
4443ad2antrr 758 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → -π ≤ 𝑠)
45 0red 9920 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 0 ∈ ℝ)
46 neqne 2790 . . . . . . . . . 10 𝑠 = 0 → 𝑠 ≠ 0)
4746ad2antlr 759 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 ≠ 0)
48 simpr 476 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → ¬ 0 < 𝑠)
4941, 45, 47, 48lttri5d 38454 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 < 0)
505ad2antrr 758 . . . . . . . . 9 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → -π ∈ ℝ)
51 elico2 12108 . . . . . . . . 9 ((-π ∈ ℝ ∧ 0 ∈ ℝ*) → (𝑠 ∈ (-π[,)0) ↔ (𝑠 ∈ ℝ ∧ -π ≤ 𝑠𝑠 < 0)))
5250, 19, 51sylancl 693 . . . . . . . 8 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → (𝑠 ∈ (-π[,)0) ↔ (𝑠 ∈ ℝ ∧ -π ≤ 𝑠𝑠 < 0)))
5341, 44, 49, 52mpbir3and 1238 . . . . . . 7 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → 𝑠 ∈ (-π[,)0))
543renegcli 10221 . . . . . . . . . . . . . . 15 -π ∈ ℝ
55 elicore 12097 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ 𝑠 ∈ (-π[,)0)) → 𝑠 ∈ ℝ)
5654, 55mpan 702 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,)0) → 𝑠 ∈ ℝ)
5756recnd 9947 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 𝑠 ∈ ℂ)
58 2cnd 10970 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 2 ∈ ℂ)
5917a1i 11 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 2 ≠ 0)
6057, 58, 59divnegd 10693 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → -(𝑠 / 2) = (-𝑠 / 2))
6160eqcomd 2616 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → (-𝑠 / 2) = -(𝑠 / 2))
6261fveq2d 6107 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (sin‘(-𝑠 / 2)) = (sin‘-(𝑠 / 2)))
6362negeqd 10154 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → -(sin‘(-𝑠 / 2)) = -(sin‘-(𝑠 / 2)))
6457halfcld 11154 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → (𝑠 / 2) ∈ ℂ)
65 sinneg 14715 . . . . . . . . . . 11 ((𝑠 / 2) ∈ ℂ → (sin‘-(𝑠 / 2)) = -(sin‘(𝑠 / 2)))
6664, 65syl 17 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (sin‘-(𝑠 / 2)) = -(sin‘(𝑠 / 2)))
6766negeqd 10154 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → -(sin‘-(𝑠 / 2)) = --(sin‘(𝑠 / 2)))
6864sincld 14699 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (sin‘(𝑠 / 2)) ∈ ℂ)
6968negnegd 10262 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → --(sin‘(𝑠 / 2)) = (sin‘(𝑠 / 2)))
7063, 67, 693eqtrd 2648 . . . . . . . 8 (𝑠 ∈ (-π[,)0) → -(sin‘(-𝑠 / 2)) = (sin‘(𝑠 / 2)))
7157negcld 10258 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → -𝑠 ∈ ℂ)
7271halfcld 11154 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → (-𝑠 / 2) ∈ ℂ)
7372sincld 14699 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → (sin‘(-𝑠 / 2)) ∈ ℂ)
7419a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → 0 ∈ ℝ*)
7522a1i 11 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → (2 · π) ∈ ℝ*)
7656renegcld 10336 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → -𝑠 ∈ ℝ)
7754a1i 11 . . . . . . . . . . . . . 14 (𝑠 ∈ (-π[,)0) → -π ∈ ℝ)
7877rexrd 9968 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → -π ∈ ℝ*)
79 id 22 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → 𝑠 ∈ (-π[,)0))
80 icoltub 38579 . . . . . . . . . . . . 13 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ (-π[,)0)) → 𝑠 < 0)
8178, 74, 79, 80syl3anc 1318 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → 𝑠 < 0)
8256lt0neg1d 10476 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → (𝑠 < 0 ↔ 0 < -𝑠))
8381, 82mpbid 221 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → 0 < -𝑠)
843a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → π ∈ ℝ)
8521a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → (2 · π) ∈ ℝ)
86 icogelb 12096 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ 0 ∈ ℝ*𝑠 ∈ (-π[,)0)) → -π ≤ 𝑠)
8778, 74, 79, 86syl3anc 1318 . . . . . . . . . . . . 13 (𝑠 ∈ (-π[,)0) → -π ≤ 𝑠)
8884, 56, 87lenegcon1d 10488 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → -𝑠 ≤ π)
8933a1i 11 . . . . . . . . . . . 12 (𝑠 ∈ (-π[,)0) → π < (2 · π))
9076, 84, 85, 88, 89lelttrd 10074 . . . . . . . . . . 11 (𝑠 ∈ (-π[,)0) → -𝑠 < (2 · π))
9174, 75, 76, 83, 90eliood 38567 . . . . . . . . . 10 (𝑠 ∈ (-π[,)0) → -𝑠 ∈ (0(,)(2 · π)))
92 sinaover2ne0 38751 . . . . . . . . . 10 (-𝑠 ∈ (0(,)(2 · π)) → (sin‘(-𝑠 / 2)) ≠ 0)
9391, 92syl 17 . . . . . . . . 9 (𝑠 ∈ (-π[,)0) → (sin‘(-𝑠 / 2)) ≠ 0)
9473, 93negne0d 10269 . . . . . . . 8 (𝑠 ∈ (-π[,)0) → -(sin‘(-𝑠 / 2)) ≠ 0)
9570, 94eqnetrrd 2850 . . . . . . 7 (𝑠 ∈ (-π[,)0) → (sin‘(𝑠 / 2)) ≠ 0)
9653, 95syl 17 . . . . . 6 (((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) ∧ ¬ 0 < 𝑠) → (sin‘(𝑠 / 2)) ≠ 0)
9740, 96pm2.61dan 828 . . . . 5 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ≠ 0)
9815, 16, 18, 97mulne0d 10558 . . . 4 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
999, 14, 98redivcld 10732 . . 3 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℝ)
1002, 99ifclda 4070 . 2 (𝑠 ∈ (-π[,]π) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℝ)
1011, 100fmpti 6291 1 𝐾:(-π[,]π)⟶ℝ
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   · cmul 9820  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  -cneg 10146   / cdiv 10563  2c2 10947  ℝ+crp 11708  (,)cioo 12046  [,)cico 12048  [,]cicc 12049  sincsin 14633  πcpi 14636 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by:  fourierdlem55  39054  fourierdlem62  39061  fourierdlem66  39065  fourierdlem77  39076  fourierdlem85  39084  fourierdlem88  39087  fourierdlem103  39102  fourierdlem104  39103
 Copyright terms: Public domain W3C validator