Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem23 Structured version   Visualization version   GIF version

Theorem poimirlem23 32602
Description: Lemma for poimir 32612, two ways of expressing the property that a face is not on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem23.1 (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))
poimirlem23.2 (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))
poimirlem23.3 (𝜑𝑉 ∈ (0...𝑁))
Assertion
Ref Expression
poimirlem23 (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
Distinct variable groups:   𝑗,𝑝,𝑦,𝜑   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝑈,𝑗,𝑦   𝑗,𝑉,𝑦   𝜑,𝑝   𝑗,𝐾,𝑝   𝑁,𝑝   𝑇,𝑝   𝑈,𝑝   𝑦,𝐾   𝑉,𝑝

Proof of Theorem poimirlem23
StepHypRef Expression
1 ovex 6577 . . . . . 6 (𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
21csbex 4721 . . . . 5 if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
32rgenw 2908 . . . 4 𝑦 ∈ (0...(𝑁 − 1))if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
4 eqid 2610 . . . . 5 (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
5 fveq1 6102 . . . . . . 7 (𝑝 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝑝𝑁) = (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁))
65neeq1d 2841 . . . . . 6 (𝑝 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝑝𝑁) ≠ 0 ↔ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0))
7 df-ne 2782 . . . . . 6 ((if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0 ↔ ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
86, 7syl6bb 275 . . . . 5 (𝑝 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝑝𝑁) ≠ 0 ↔ ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
94, 8rexrnmpt 6277 . . . 4 (∀𝑦 ∈ (0...(𝑁 − 1))if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
103, 9ax-mp 5 . . 3 (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
11 rexnal 2978 . . 3 (∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
1210, 11bitri 263 . 2 (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
13 poimir.0 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
1413nnzd 11357 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
15 poimirlem23.3 . . . . . . . . . . 11 (𝜑𝑉 ∈ (0...𝑁))
16 elfzelz 12213 . . . . . . . . . . 11 (𝑉 ∈ (0...𝑁) → 𝑉 ∈ ℤ)
1715, 16syl 17 . . . . . . . . . 10 (𝜑𝑉 ∈ ℤ)
18 zlem1lt 11306 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑉 ∈ ℤ) → (𝑁𝑉 ↔ (𝑁 − 1) < 𝑉))
1914, 17, 18syl2anc 691 . . . . . . . . 9 (𝜑 → (𝑁𝑉 ↔ (𝑁 − 1) < 𝑉))
20 elfzle2 12216 . . . . . . . . . . 11 (𝑉 ∈ (0...𝑁) → 𝑉𝑁)
2115, 20syl 17 . . . . . . . . . 10 (𝜑𝑉𝑁)
2217zred 11358 . . . . . . . . . . . 12 (𝜑𝑉 ∈ ℝ)
2313nnred 10912 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ)
2422, 23letri3d 10058 . . . . . . . . . . 11 (𝜑 → (𝑉 = 𝑁 ↔ (𝑉𝑁𝑁𝑉)))
2524biimprd 237 . . . . . . . . . 10 (𝜑 → ((𝑉𝑁𝑁𝑉) → 𝑉 = 𝑁))
2621, 25mpand 707 . . . . . . . . 9 (𝜑 → (𝑁𝑉𝑉 = 𝑁))
2719, 26sylbird 249 . . . . . . . 8 (𝜑 → ((𝑁 − 1) < 𝑉𝑉 = 𝑁))
2827necon3ad 2795 . . . . . . 7 (𝜑 → (𝑉𝑁 → ¬ (𝑁 − 1) < 𝑉))
29 nnm1nn0 11211 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
3013, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℕ0)
31 nn0fz0 12306 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (0...(𝑁 − 1)))
3230, 31sylib 207 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ (0...(𝑁 − 1)))
3332adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (𝑁 − 1) ∈ (0...(𝑁 − 1)))
34 iffalse 4045 . . . . . . . . . . . . . . . 16 (¬ (𝑁 − 1) < 𝑉 → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) = ((𝑁 − 1) + 1))
3513nncnd 10913 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
36 npcan1 10334 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3735, 36syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
3834, 37sylan9eqr 2666 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) = 𝑁)
3938csbeq1d 3506 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑁 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
40 oveq2 6557 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑁 → (1...𝑗) = (1...𝑁))
4140imaeq2d 5385 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑁 → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...𝑁)))
4241xpeq1d 5062 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑁 → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...𝑁)) × {1}))
43 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
4443oveq1d 6564 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑁 → ((𝑗 + 1)...𝑁) = ((𝑁 + 1)...𝑁))
4544imaeq2d 5385 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑁 → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ ((𝑁 + 1)...𝑁)))
4645xpeq1d 5062 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑁 → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}))
4742, 46uneq12d 3730 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑁 → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})))
48 poimirlem23.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))
49 f1ofo 6057 . . . . . . . . . . . . . . . . . . . . . 22 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–onto→(1...𝑁))
50 foima 6033 . . . . . . . . . . . . . . . . . . . . . 22 (𝑈:(1...𝑁)–onto→(1...𝑁) → (𝑈 “ (1...𝑁)) = (1...𝑁))
5148, 49, 503syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑈 “ (1...𝑁)) = (1...𝑁))
5251xpeq1d 5062 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑈 “ (1...𝑁)) × {1}) = ((1...𝑁) × {1}))
5323ltp1d 10833 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑁 < (𝑁 + 1))
5414peano2zd 11361 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑁 + 1) ∈ ℤ)
55 fzn 12228 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅))
5654, 14, 55syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅))
5753, 56mpbid 221 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑁 + 1)...𝑁) = ∅)
5857imaeq2d 5385 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑈 “ ((𝑁 + 1)...𝑁)) = (𝑈 “ ∅))
5958xpeq1d 5062 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}) = ((𝑈 “ ∅) × {0}))
60 ima0 5400 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑈 “ ∅) = ∅
6160xpeq1i 5059 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑈 “ ∅) × {0}) = (∅ × {0})
62 0xp 5122 . . . . . . . . . . . . . . . . . . . . . 22 (∅ × {0}) = ∅
6361, 62eqtri 2632 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 “ ∅) × {0}) = ∅
6459, 63syl6eq 2660 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}) = ∅)
6552, 64uneq12d 3730 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})) = (((1...𝑁) × {1}) ∪ ∅))
66 un0 3919 . . . . . . . . . . . . . . . . . . 19 (((1...𝑁) × {1}) ∪ ∅) = ((1...𝑁) × {1})
6765, 66syl6eq 2660 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})) = ((1...𝑁) × {1}))
6847, 67sylan9eqr 2666 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = 𝑁) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = ((1...𝑁) × {1}))
6968oveq2d 6565 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 = 𝑁) → (𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇𝑓 + ((1...𝑁) × {1})))
7013, 69csbied 3526 . . . . . . . . . . . . . . 15 (𝜑𝑁 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇𝑓 + ((1...𝑁) × {1})))
7170adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → 𝑁 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇𝑓 + ((1...𝑁) × {1})))
7239, 71eqtrd 2644 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇𝑓 + ((1...𝑁) × {1})))
7372fveq1d 6105 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇𝑓 + ((1...𝑁) × {1}))‘𝑁))
74 elfzonn0 12380 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0..^𝐾) → 𝑗 ∈ ℕ0)
75 nn0p1nn 11209 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
7674, 75syl 17 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0..^𝐾) → (𝑗 + 1) ∈ ℕ)
77 elsni 4142 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {1} → 𝑦 = 1)
7877oveq2d 6565 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {1} → (𝑗 + 𝑦) = (𝑗 + 1))
7978eleq1d 2672 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {1} → ((𝑗 + 𝑦) ∈ ℕ ↔ (𝑗 + 1) ∈ ℕ))
8076, 79syl5ibrcom 236 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0..^𝐾) → (𝑦 ∈ {1} → (𝑗 + 𝑦) ∈ ℕ))
8180imp 444 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0..^𝐾) ∧ 𝑦 ∈ {1}) → (𝑗 + 𝑦) ∈ ℕ)
8281adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ (0..^𝐾) ∧ 𝑦 ∈ {1})) → (𝑗 + 𝑦) ∈ ℕ)
83 poimirlem23.1 . . . . . . . . . . . . . . 15 (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))
84 1ex 9914 . . . . . . . . . . . . . . . . 17 1 ∈ V
8584fconst 6004 . . . . . . . . . . . . . . . 16 ((1...𝑁) × {1}):(1...𝑁)⟶{1}
8685a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ((1...𝑁) × {1}):(1...𝑁)⟶{1})
87 ovex 6577 . . . . . . . . . . . . . . . 16 (1...𝑁) ∈ V
8887a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (1...𝑁) ∈ V)
89 inidm 3784 . . . . . . . . . . . . . . 15 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
9082, 83, 86, 88, 88, 89off 6810 . . . . . . . . . . . . . 14 (𝜑 → (𝑇𝑓 + ((1...𝑁) × {1})):(1...𝑁)⟶ℕ)
91 elfz1end 12242 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
9213, 91sylib 207 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (1...𝑁))
9390, 92ffvelrnd 6268 . . . . . . . . . . . . 13 (𝜑 → ((𝑇𝑓 + ((1...𝑁) × {1}))‘𝑁) ∈ ℕ)
9493adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ((𝑇𝑓 + ((1...𝑁) × {1}))‘𝑁) ∈ ℕ)
9573, 94eqeltrd 2688 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ∈ ℕ)
9695nnne0d 10942 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0)
97 breq1 4586 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑁 − 1) → (𝑦 < 𝑉 ↔ (𝑁 − 1) < 𝑉))
98 id 22 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑁 − 1) → 𝑦 = (𝑁 − 1))
99 oveq1 6556 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑁 − 1) → (𝑦 + 1) = ((𝑁 − 1) + 1))
10097, 98, 99ifbieq12d 4063 . . . . . . . . . . . . . . 15 (𝑦 = (𝑁 − 1) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)))
101100csbeq1d 3506 . . . . . . . . . . . . . 14 (𝑦 = (𝑁 − 1) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
102101fveq1d 6105 . . . . . . . . . . . . 13 (𝑦 = (𝑁 − 1) → (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁))
103102neeq1d 2841 . . . . . . . . . . . 12 (𝑦 = (𝑁 − 1) → ((if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0 ↔ (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0))
1047, 103syl5bbr 273 . . . . . . . . . . 11 (𝑦 = (𝑁 − 1) → (¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0))
105104rspcev 3282 . . . . . . . . . 10 (((𝑁 − 1) ∈ (0...(𝑁 − 1)) ∧ (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0) → ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
10633, 96, 105syl2anc 691 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
107106, 11sylib 207 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
108107ex 449 . . . . . . 7 (𝜑 → (¬ (𝑁 − 1) < 𝑉 → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
10928, 108syld 46 . . . . . 6 (𝜑 → (𝑉𝑁 → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
110109necon4ad 2801 . . . . 5 (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 → 𝑉 = 𝑁))
111110pm4.71rd 665 . . . 4 (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑉 = 𝑁 ∧ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)))
11230nn0zd 11356 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ ℤ)
113 uzid 11578 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
114 peano2uz 11617 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
115112, 113, 1143syl 18 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
11637, 115eqeltrrd 2689 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
117 fzss2 12252 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
118116, 117syl 17 . . . . . . . . . 10 (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁))
119118sselda 3568 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ (0...𝑁))
12092adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑁 ∈ (1...𝑁))
121 ffn 5958 . . . . . . . . . . . . . . 15 (𝑇:(1...𝑁)⟶(0..^𝐾) → 𝑇 Fn (1...𝑁))
12283, 121syl 17 . . . . . . . . . . . . . 14 (𝜑𝑇 Fn (1...𝑁))
123122adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑇 Fn (1...𝑁))
12484fconst 6004 . . . . . . . . . . . . . . . . 17 ((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1}
125 c0ex 9913 . . . . . . . . . . . . . . . . . 18 0 ∈ V
126125fconst 6004 . . . . . . . . . . . . . . . . 17 ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}
127124, 126pm3.2i 470 . . . . . . . . . . . . . . . 16 (((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0})
128 dff1o3 6056 . . . . . . . . . . . . . . . . . . 19 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (𝑈:(1...𝑁)–onto→(1...𝑁) ∧ Fun 𝑈))
129128simprbi 479 . . . . . . . . . . . . . . . . . 18 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → Fun 𝑈)
130 imain 5888 . . . . . . . . . . . . . . . . . 18 (Fun 𝑈 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))))
13148, 129, 1303syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))))
132 elfzelz 12213 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
133132zred 11358 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ)
134133ltp1d 10833 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑁) → 𝑗 < (𝑗 + 1))
135 fzdisj 12239 . . . . . . . . . . . . . . . . . . . 20 (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅)
136134, 135syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑁) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅)
137136imaeq2d 5385 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (𝑈 “ ∅))
138137, 60syl6eq 2660 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅)
139131, 138sylan9req 2665 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅)
140 fun 5979 . . . . . . . . . . . . . . . 16 (((((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}) ∧ ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}))
141127, 139, 140sylancr 694 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}))
142 elfznn0 12302 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℕ0)
143142, 75syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ ℕ)
144 nnuz 11599 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
145143, 144syl6eleq 2698 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ (ℤ‘1))
146 elfzuz3 12210 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝑗))
147 fzsplit2 12237 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ𝑗)) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))
148145, 146, 147syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑁) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))
149148imaeq2d 5385 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑁) → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))))
150 imaundi 5464 . . . . . . . . . . . . . . . . . 18 (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))
151149, 150syl6req 2661 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑁) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (𝑈 “ (1...𝑁)))
152151, 51sylan9eqr 2666 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (1...𝑁))
153152feq2d 5944 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}) ↔ (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})))
154141, 153mpbid 221 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))
155 ffn 5958 . . . . . . . . . . . . . 14 ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) Fn (1...𝑁))
156154, 155syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) Fn (1...𝑁))
15787a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → (1...𝑁) ∈ V)
158 eqidd 2611 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → (𝑇𝑁) = (𝑇𝑁))
159 eqidd 2611 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
160123, 156, 157, 157, 89, 158, 159ofval 6804 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → ((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)))
161120, 160mpdan 699 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)))
162161eqeq1d 2612 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0))
16383, 92ffvelrnd 6268 . . . . . . . . . . . . . 14 (𝜑 → (𝑇𝑁) ∈ (0..^𝐾))
164 elfzonn0 12380 . . . . . . . . . . . . . 14 ((𝑇𝑁) ∈ (0..^𝐾) → (𝑇𝑁) ∈ ℕ0)
165163, 164syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑇𝑁) ∈ ℕ0)
166165nn0red 11229 . . . . . . . . . . . 12 (𝜑 → (𝑇𝑁) ∈ ℝ)
167166adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑇𝑁) ∈ ℝ)
168165nn0ge0d 11231 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑇𝑁))
169168adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → 0 ≤ (𝑇𝑁))
170 1re 9918 . . . . . . . . . . . . . 14 1 ∈ ℝ
171 snssi 4280 . . . . . . . . . . . . . 14 (1 ∈ ℝ → {1} ⊆ ℝ)
172170, 171ax-mp 5 . . . . . . . . . . . . 13 {1} ⊆ ℝ
173 0re 9919 . . . . . . . . . . . . . 14 0 ∈ ℝ
174 snssi 4280 . . . . . . . . . . . . . 14 (0 ∈ ℝ → {0} ⊆ ℝ)
175173, 174ax-mp 5 . . . . . . . . . . . . 13 {0} ⊆ ℝ
176172, 175unssi 3750 . . . . . . . . . . . 12 ({1} ∪ {0}) ⊆ ℝ
177154, 120ffvelrnd 6268 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0}))
178176, 177sseldi 3566 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ℝ)
179 elun 3715 . . . . . . . . . . . . 13 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0}) ↔ (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} ∨ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0}))
180 0le1 10430 . . . . . . . . . . . . . . 15 0 ≤ 1
181 elsni 4142 . . . . . . . . . . . . . . 15 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 1)
182180, 181syl5breqr 4621 . . . . . . . . . . . . . 14 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
183 0le0 10987 . . . . . . . . . . . . . . 15 0 ≤ 0
184 elsni 4142 . . . . . . . . . . . . . . 15 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0} → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
185183, 184syl5breqr 4621 . . . . . . . . . . . . . 14 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0} → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
186182, 185jaoi 393 . . . . . . . . . . . . 13 ((((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} ∨ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0}) → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
187179, 186sylbi 206 . . . . . . . . . . . 12 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0}) → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
188177, 187syl 17 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
189 add20 10419 . . . . . . . . . . 11 ((((𝑇𝑁) ∈ ℝ ∧ 0 ≤ (𝑇𝑁)) ∧ (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ℝ ∧ 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))) → (((𝑇𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0 ↔ ((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
190167, 169, 178, 188, 189syl22anc 1319 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑇𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0 ↔ ((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
191162, 190bitrd 267 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
192119, 191syldan 486 . . . . . . . 8 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → (((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
193192ralbidva 2968 . . . . . . 7 (𝜑 → (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
194193adantr 480 . . . . . 6 ((𝜑𝑉 = 𝑁) → (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
195 breq2 4587 . . . . . . . . . . . . . 14 (𝑉 = 𝑁 → (𝑦 < 𝑉𝑦 < 𝑁))
196195ifbid 4058 . . . . . . . . . . . . 13 (𝑉 = 𝑁 → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = if(𝑦 < 𝑁, 𝑦, (𝑦 + 1)))
197 elfzelz 12213 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ)
198197zred 11358 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ)
199198adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ)
20030nn0red 11229 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℝ)
201200adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ)
20223adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ)
203 elfzle2 12216 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1))
204203adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1))
20523ltm1d 10835 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) < 𝑁)
206205adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁)
207199, 201, 202, 204, 206lelttrd 10074 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁)
208207iftrued 4044 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑁, 𝑦, (𝑦 + 1)) = 𝑦)
209196, 208sylan9eqr 2666 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑉 = 𝑁) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = 𝑦)
210209an32s 842 . . . . . . . . . . 11 (((𝜑𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = 𝑦)
211210csbeq1d 3506 . . . . . . . . . 10 (((𝜑𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
212211fveq1d 6105 . . . . . . . . 9 (((𝜑𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (𝑦 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁))
213212eqeq1d 2612 . . . . . . . 8 (((𝜑𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑦 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
214213ralbidva 2968 . . . . . . 7 ((𝜑𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑦 ∈ (0...(𝑁 − 1))(𝑦 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
215 nfv 1830 . . . . . . . 8 𝑦((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0
216 nfcsb1v 3515 . . . . . . . . . 10 𝑗𝑦 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))
217 nfcv 2751 . . . . . . . . . 10 𝑗𝑁
218216, 217nffv 6110 . . . . . . . . 9 𝑗(𝑦 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁)
219218nfeq1 2764 . . . . . . . 8 𝑗(𝑦 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0
220 csbeq1a 3508 . . . . . . . . . 10 (𝑗 = 𝑦 → (𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
221220fveq1d 6105 . . . . . . . . 9 (𝑗 = 𝑦 → ((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (𝑦 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁))
222221eqeq1d 2612 . . . . . . . 8 (𝑗 = 𝑦 → (((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑦 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
223215, 219, 222cbvral 3143 . . . . . . 7 (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑦 ∈ (0...(𝑁 − 1))(𝑦 / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
224214, 223syl6bbr 277 . . . . . 6 ((𝜑𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
225 ne0i 3880 . . . . . . . . . 10 ((𝑁 − 1) ∈ (0...(𝑁 − 1)) → (0...(𝑁 − 1)) ≠ ∅)
226 r19.3rzv 4016 . . . . . . . . . 10 ((0...(𝑁 − 1)) ≠ ∅ → ((𝑇𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))(𝑇𝑁) = 0))
22732, 225, 2263syl 18 . . . . . . . . 9 (𝜑 → ((𝑇𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))(𝑇𝑁) = 0))
228 elfzelz 12213 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ)
229228zred 11358 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℝ)
230229ltp1d 10833 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 < (𝑗 + 1))
231230, 135syl 17 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...(𝑁 − 1)) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅)
232231imaeq2d 5385 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (𝑈 “ ∅))
233232, 60syl6eq 2660 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅)
234131, 233sylan9req 2665 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅)
235234adantlr 747 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅)
236 simplr 788 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑈𝑁) = 𝑁)
237 f1ofn 6051 . . . . . . . . . . . . . . . . . . 19 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈 Fn (1...𝑁))
23848, 237syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 Fn (1...𝑁))
239238adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → 𝑈 Fn (1...𝑁))
240 elfznn0 12302 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
241240, 75syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℕ)
242241, 144syl6eleq 2698 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ (ℤ‘1))
243 fzss1 12251 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ (ℤ‘1) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁))
244242, 243syl 17 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...(𝑁 − 1)) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁))
245244adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁))
24637adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
247 elfzuz3 12210 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑗))
248 eluzp1p1 11589 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 − 1) ∈ (ℤ𝑗) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑗 + 1)))
249247, 248syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑗 + 1)))
250249adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑗 + 1)))
251246, 250eqeltrrd 2689 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘(𝑗 + 1)))
252 eluzfz2 12220 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘(𝑗 + 1)) → 𝑁 ∈ ((𝑗 + 1)...𝑁))
253251, 252syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑗 + 1)...𝑁))
254 fnfvima 6400 . . . . . . . . . . . . . . . . 17 ((𝑈 Fn (1...𝑁) ∧ ((𝑗 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑗 + 1)...𝑁)) → (𝑈𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))
255239, 245, 253, 254syl3anc 1318 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → (𝑈𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))
256255adantlr 747 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑈𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))
257236, 256eqeltrrd 2689 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))
258 fnconstg 6006 . . . . . . . . . . . . . . . 16 (1 ∈ V → ((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)))
25984, 258ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗))
260 fnconstg 6006 . . . . . . . . . . . . . . . 16 (0 ∈ V → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁)))
261125, 260ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁))
262 fvun2 6180 . . . . . . . . . . . . . . 15 ((((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁)) ∧ (((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁))
263259, 261, 262mp3an12 1406 . . . . . . . . . . . . . 14 ((((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁))
264235, 257, 263syl2anc 691 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁))
265125fvconst2 6374 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁)) → (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁) = 0)
266257, 265syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁) = 0)
267264, 266eqtrd 2644 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
268267ralrimiva 2949 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈𝑁) = 𝑁) → ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
269268ex 449 . . . . . . . . . 10 (𝜑 → ((𝑈𝑁) = 𝑁 → ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))
27032adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → (𝑁 − 1) ∈ (0...(𝑁 − 1)))
271 ax-1ne0 9884 . . . . . . . . . . . . . . 15 1 ≠ 0
272 imain 5888 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝑈 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))))
27348, 129, 2723syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))))
274205, 37breqtrrd 4611 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑁 − 1) < ((𝑁 − 1) + 1))
275 fzdisj 12239 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 − 1) < ((𝑁 − 1) + 1) → ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁)) = ∅)
276274, 275syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁)) = ∅)
277276imaeq2d 5385 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = (𝑈 “ ∅))
278277, 60syl6eq 2660 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ∅)
279273, 278eqtr3d 2646 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅)
280279adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅)
28192adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → 𝑁 ∈ (1...𝑁))
282 elimasni 5411 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (𝑈 “ {𝑁}) → 𝑁𝑈𝑁)
283 fnbrfvb 6146 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑈 Fn (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → ((𝑈𝑁) = 𝑁𝑁𝑈𝑁))
284238, 92, 283syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑈𝑁) = 𝑁𝑁𝑈𝑁))
285282, 284syl5ibr 235 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑁 ∈ (𝑈 “ {𝑁}) → (𝑈𝑁) = 𝑁))
286285necon3ad 2795 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑈𝑁) ≠ 𝑁 → ¬ 𝑁 ∈ (𝑈 “ {𝑁})))
287286imp 444 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ¬ 𝑁 ∈ (𝑈 “ {𝑁}))
288281, 287eldifd 3551 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → 𝑁 ∈ ((1...𝑁) ∖ (𝑈 “ {𝑁})))
289 imadif 5887 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝑈 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁})))
29048, 129, 2893syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁})))
291 difun2 4000 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ {𝑁}) = ((1...(𝑁 − 1)) ∖ {𝑁})
29213, 144syl6eleq 2698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑁 ∈ (ℤ‘1))
293 fzm1 12289 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘1) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁)))
294292, 293syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁)))
295 elun 3715 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 ∈ {𝑁}))
296 velsn 4141 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ {𝑁} ↔ 𝑗 = 𝑁)
297296orbi2i 540 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 ∈ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁))
298295, 297bitri 263 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁))
299294, 298syl6rbbr 278 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ 𝑗 ∈ (1...𝑁)))
300299eqrdv 2608 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁))
301300difeq1d 3689 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ {𝑁}) = ((1...𝑁) ∖ {𝑁}))
302200, 23ltnled 10063 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1)))
303205, 302mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1))
304 elfzle2 12216 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
305303, 304nsyl 134 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1)))
306 difsn 4269 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑁 ∈ (1...(𝑁 − 1)) → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1)))
307305, 306syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1)))
308291, 301, 3073eqtr3a 2668 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
309308imaeq2d 5385 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = (𝑈 “ (1...(𝑁 − 1))))
31051difeq1d 3689 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁})) = ((1...𝑁) ∖ (𝑈 “ {𝑁})))
311290, 309, 3103eqtr3rd 2653 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((1...𝑁) ∖ (𝑈 “ {𝑁})) = (𝑈 “ (1...(𝑁 − 1))))
312311adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ((1...𝑁) ∖ (𝑈 “ {𝑁})) = (𝑈 “ (1...(𝑁 − 1))))
313288, 312eleqtrd 2690 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1))))
314 fnconstg 6006 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ V → ((𝑈 “ (1...(𝑁 − 1))) × {1}) Fn (𝑈 “ (1...(𝑁 − 1))))
31584, 314ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑈 “ (1...(𝑁 − 1))) × {1}) Fn (𝑈 “ (1...(𝑁 − 1)))
316 fnconstg 6006 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ V → ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑁 − 1) + 1)...𝑁)))
317125, 316ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑁 − 1) + 1)...𝑁))
318 fvun1 6179 . . . . . . . . . . . . . . . . . . 19 ((((𝑈 “ (1...(𝑁 − 1))) × {1}) Fn (𝑈 “ (1...(𝑁 − 1))) ∧ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑁 − 1) + 1)...𝑁)) ∧ (((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1))))) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁))
319315, 317, 318mp3an12 1406 . . . . . . . . . . . . . . . . . 18 ((((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1)))) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁))
320280, 313, 319syl2anc 691 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁))
32184fvconst2 6374 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (𝑈 “ (1...(𝑁 − 1))) → (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁) = 1)
322313, 321syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁) = 1)
323320, 322eqtrd 2644 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = 1)
324323neeq1d 2841 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → (((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ 1 ≠ 0))
325271, 324mpbiri 247 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0)
326 df-ne 2782 . . . . . . . . . . . . . . . 16 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
327 oveq2 6557 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (𝑁 − 1) → (1...𝑗) = (1...(𝑁 − 1)))
328327imaeq2d 5385 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑁 − 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑁 − 1))))
329328xpeq1d 5062 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑁 − 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑁 − 1))) × {1}))
330 oveq1 6556 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = (𝑁 − 1) → (𝑗 + 1) = ((𝑁 − 1) + 1))
331330oveq1d 6564 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (𝑁 − 1) → ((𝑗 + 1)...𝑁) = (((𝑁 − 1) + 1)...𝑁))
332331imaeq2d 5385 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑁 − 1) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (((𝑁 − 1) + 1)...𝑁)))
333332xpeq1d 5062 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑁 − 1) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))
334329, 333uneq12d 3730 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑁 − 1) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0})))
335334fveq1d 6105 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑁 − 1) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁))
336335neeq1d 2841 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑁 − 1) → (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0))
337326, 336syl5bbr 273 . . . . . . . . . . . . . . 15 (𝑗 = (𝑁 − 1) → (¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 ↔ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0))
338337rspcev 3282 . . . . . . . . . . . . . 14 (((𝑁 − 1) ∈ (0...(𝑁 − 1)) ∧ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0) → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
339270, 325, 338syl2anc 691 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
340339ex 449 . . . . . . . . . . . 12 (𝜑 → ((𝑈𝑁) ≠ 𝑁 → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))
341 rexnal 2978 . . . . . . . . . . . 12 (∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 ↔ ¬ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
342340, 341syl6ib 240 . . . . . . . . . . 11 (𝜑 → ((𝑈𝑁) ≠ 𝑁 → ¬ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))
343342necon4ad 2801 . . . . . . . . . 10 (𝜑 → (∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 → (𝑈𝑁) = 𝑁))
344269, 343impbid 201 . . . . . . . . 9 (𝜑 → ((𝑈𝑁) = 𝑁 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))
345227, 344anbi12d 743 . . . . . . . 8 (𝜑 → (((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁) ↔ (∀𝑗 ∈ (0...(𝑁 − 1))(𝑇𝑁) = 0 ∧ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
346 r19.26 3046 . . . . . . . 8 (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) ↔ (∀𝑗 ∈ (0...(𝑁 − 1))(𝑇𝑁) = 0 ∧ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))
347345, 346syl6bbr 277 . . . . . . 7 (𝜑 → (((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁) ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
348347adantr 480 . . . . . 6 ((𝜑𝑉 = 𝑁) → (((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁) ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
349194, 224, 3483bitr4d 299 . . . . 5 ((𝜑𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁)))
350349pm5.32da 671 . . . 4 (𝜑 → ((𝑉 = 𝑁 ∧ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) ↔ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
351111, 350bitrd 267 . . 3 (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
352351notbid 307 . 2 (𝜑 → (¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
35312, 352syl5bb 271 1 (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇𝑓 + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  csb 3499  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  ccnv 5037  ran crn 5039  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  𝑓 cof 6793  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  ..^cfzo 12334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335
This theorem is referenced by:  poimirlem24  32603
  Copyright terms: Public domain W3C validator