Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundi Structured version   Visualization version   GIF version

Theorem imaundi 5464
 Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
imaundi (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem imaundi
StepHypRef Expression
1 resundi 5330 . . . 4 (𝐴 ↾ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
21rneqi 5273 . . 3 ran (𝐴 ↾ (𝐵𝐶)) = ran ((𝐴𝐵) ∪ (𝐴𝐶))
3 rnun 5460 . . 3 ran ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
42, 3eqtri 2632 . 2 ran (𝐴 ↾ (𝐵𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
5 df-ima 5051 . 2 (𝐴 “ (𝐵𝐶)) = ran (𝐴 ↾ (𝐵𝐶))
6 df-ima 5051 . . 3 (𝐴𝐵) = ran (𝐴𝐵)
7 df-ima 5051 . . 3 (𝐴𝐶) = ran (𝐴𝐶)
86, 7uneq12i 3727 . 2 ((𝐴𝐵) ∪ (𝐴𝐶)) = (ran (𝐴𝐵) ∪ ran (𝐴𝐶))
94, 5, 83eqtr4i 2642 1 (𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∪ cun 3538  ran crn 5039   ↾ cres 5040   “ cima 5041 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051 This theorem is referenced by:  fnimapr  6172  domunfican  8118  fiint  8122  fodomfi  8124  marypha1lem  8222  dprd2da  18264  dmdprdsplit2lem  18267  uniioombllem3  23159  mbfimaicc  23206  plyeq0  23771  eupath2lem3  26506  ffsrn  28892  imadifss  32554  poimirlem1  32580  poimirlem2  32581  poimirlem3  32582  poimirlem4  32583  poimirlem6  32585  poimirlem7  32586  poimirlem11  32590  poimirlem12  32591  poimirlem15  32594  poimirlem16  32595  poimirlem17  32596  poimirlem19  32598  poimirlem20  32599  poimirlem23  32602  poimirlem24  32603  poimirlem25  32604  poimirlem29  32608  poimirlem31  32610  mbfposadd  32627  itg2addnclem2  32632  ftc1anclem1  32655  ftc1anclem5  32659  brtrclfv2  37038  frege77d  37057  frege109d  37068  frege131d  37075  dffrege76  37253  icccncfext  38773  resunimafz0  40368
 Copyright terms: Public domain W3C validator