MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulg0 Structured version   Visualization version   GIF version

Theorem mulg0 17369
Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg0.b 𝐵 = (Base‘𝐺)
mulg0.o 0 = (0g𝐺)
mulg0.t · = (.g𝐺)
Assertion
Ref Expression
mulg0 (𝑋𝐵 → (0 · 𝑋) = 0 )

Proof of Theorem mulg0
StepHypRef Expression
1 0z 11265 . 2 0 ∈ ℤ
2 mulg0.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2610 . . . 4 (+g𝐺) = (+g𝐺)
4 mulg0.o . . . 4 0 = (0g𝐺)
5 eqid 2610 . . . 4 (invg𝐺) = (invg𝐺)
6 mulg0.t . . . 4 · = (.g𝐺)
7 eqid 2610 . . . 4 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
82, 3, 4, 5, 6, 7mulgval 17366 . . 3 ((0 ∈ ℤ ∧ 𝑋𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g𝐺), (ℕ × {𝑋}))‘0), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-0)))))
9 eqid 2610 . . . 4 0 = 0
109iftruei 4043 . . 3 if(0 = 0, 0 , if(0 < 0, (seq1((+g𝐺), (ℕ × {𝑋}))‘0), ((invg𝐺)‘(seq1((+g𝐺), (ℕ × {𝑋}))‘-0)))) = 0
118, 10syl6eq 2660 . 2 ((0 ∈ ℤ ∧ 𝑋𝐵) → (0 · 𝑋) = 0 )
121, 11mpan 702 1 (𝑋𝐵 → (0 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  ifcif 4036  {csn 4125   class class class wbr 4583   × cxp 5036  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   < clt 9953  -cneg 10146  cn 10897  cz 11254  seqcseq 12663  Basecbs 15695  +gcplusg 15768  0gc0g 15923  invgcminusg 17246  .gcmg 17363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-neg 10148  df-z 11255  df-seq 12664  df-mulg 17364
This theorem is referenced by:  mulgnn0p1  17375  mulgnn0subcl  17377  mulgneg  17383  mulgaddcom  17387  mulginvcom  17388  mulgnn0z  17390  mulgnn0dir  17394  mulgneg2  17398  mulgnn0ass  17401  mhmmulg  17406  submmulg  17409  odid  17780  oddvdsnn0  17786  oddvds  17789  odf1  17802  gexid  17819  mulgnn0di  18054  0cyg  18117  gsumconst  18157  srgmulgass  18354  srgpcomp  18355  srgbinomlem3  18365  srgbinomlem4  18366  srgbinom  18368  mulgass2  18424  lmodvsmmulgdi  18721  assamulgscmlem1  19169  mplcoe3  19287  mplcoe5  19289  mplbas2  19291  psrbagev1  19331  evlslem3  19335  evlslem1  19336  ply1scltm  19472  cnfldmulg  19597  cnfldexp  19598  chfacfscmulgsum  20484  chfacfpmmulgsum  20488  cpmadugsumlemF  20500  tmdmulg  21706  clmmulg  22709  dchrptlem2  24790  xrsmulgzz  29009  ressmulgnn0  29015  omndmul2  29043  omndmul  29045  archirng  29073  archirngz  29074  archiabllem1b  29077  archiabllem2c  29080  lmodvsmdi  41957
  Copyright terms: Public domain W3C validator