MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem3 Structured version   Visualization version   GIF version

Theorem evlslem3 19335
Description: Lemma for evlseu 19337. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.k 𝐾 = (Base‘𝑅)
evlslem1.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
evlslem1.i (𝜑𝐼 ∈ V)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem3.z 0 = (0g𝑅)
evlslem3.k (𝜑𝐴𝐷)
evlslem3.q (𝜑𝐻𝐾)
Assertion
Ref Expression
evlslem3 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹𝐻) · (𝑇 Σg (𝐴𝑓 𝐺))))
Distinct variable groups:   𝑝,𝑏,𝑥, 0   𝐵,𝑝   𝐶,𝑏   𝐷,𝑏,𝑝,𝑥   𝐹,𝑏,𝑝   ,𝑏,𝑝   ,𝑏,𝐴,𝑝,𝑥   ,𝐼   𝑥,𝐾   𝜑,𝑏,𝑥   𝐺,𝑏,𝑝   𝐻,𝑏,𝑝,𝑥   𝑆,𝑏,𝑝   𝑇,𝑏,𝑝   · ,𝑏,𝑝   𝑥,𝑅
Allowed substitution hints:   𝜑(,𝑝)   𝐵(𝑥,,𝑏)   𝐶(𝑥,,𝑝)   𝐷()   𝑃(𝑥,,𝑝,𝑏)   𝑅(,𝑝,𝑏)   𝑆(𝑥,)   𝑇(𝑥,)   · (𝑥,)   𝐸(𝑥,,𝑝,𝑏)   (𝑥,)   𝐹(𝑥,)   𝐺(𝑥,)   𝐻()   𝐼(𝑥,𝑝,𝑏)   𝐾(,𝑝,𝑏)   𝑉(𝑥,,𝑝,𝑏)   0 ()

Proof of Theorem evlslem3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlslem1.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
2 evlslem1.d . . . 4 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 evlslem3.z . . . 4 0 = (0g𝑅)
4 evlslem1.k . . . 4 𝐾 = (Base‘𝑅)
5 evlslem1.i . . . 4 (𝜑𝐼 ∈ V)
6 evlslem1.r . . . . 5 (𝜑𝑅 ∈ CRing)
7 crngring 18381 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
86, 7syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
9 evlslem1.b . . . 4 𝐵 = (Base‘𝑃)
10 evlslem3.q . . . 4 (𝜑𝐻𝐾)
11 evlslem3.k . . . 4 (𝜑𝐴𝐷)
121, 2, 3, 4, 5, 8, 9, 10, 11mplmon2cl 19321 . . 3 (𝜑 → (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) ∈ 𝐵)
13 fveq1 6102 . . . . . . . 8 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑝𝑏) = ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏))
1413fveq2d 6107 . . . . . . 7 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝐹‘(𝑝𝑏)) = (𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)))
1514oveq1d 6564 . . . . . 6 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) = ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))
1615mpteq2dv 4673 . . . . 5 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
1716oveq2d 6565 . . . 4 (𝑝 = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
18 evlslem1.e . . . 4 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
19 ovex 6577 . . . 4 (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) ∈ V
2017, 18, 19fvmpt 6191 . . 3 ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) ∈ 𝐵 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
2112, 20syl 17 . 2 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
22 simpr 476 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑏𝐷)
23 fvex 6113 . . . . . . . . . . . 12 (0g𝑅) ∈ V
243, 23eqeltri 2684 . . . . . . . . . . 11 0 ∈ V
2524a1i 11 . . . . . . . . . 10 (𝜑0 ∈ V)
26 ifexg 4107 . . . . . . . . . 10 ((𝐻𝐾0 ∈ V) → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V)
2710, 25, 26syl2anc 691 . . . . . . . . 9 (𝜑 → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V)
2827adantr 480 . . . . . . . 8 ((𝜑𝑏𝐷) → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V)
29 eqeq1 2614 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝑥 = 𝐴𝑏 = 𝐴))
3029ifbid 4058 . . . . . . . . 9 (𝑥 = 𝑏 → if(𝑥 = 𝐴, 𝐻, 0 ) = if(𝑏 = 𝐴, 𝐻, 0 ))
31 eqid 2610 . . . . . . . . 9 (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 )) = (𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))
3230, 31fvmptg 6189 . . . . . . . 8 ((𝑏𝐷 ∧ if(𝑏 = 𝐴, 𝐻, 0 ) ∈ V) → ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏) = if(𝑏 = 𝐴, 𝐻, 0 ))
3322, 28, 32syl2anc 691 . . . . . . 7 ((𝜑𝑏𝐷) → ((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏) = if(𝑏 = 𝐴, 𝐻, 0 ))
3433fveq2d 6107 . . . . . 6 ((𝜑𝑏𝐷) → (𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) = (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )))
3534oveq1d 6564 . . . . 5 ((𝜑𝑏𝐷) → ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) = ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))))
3635mpteq2dva 4672 . . . 4 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺)))))
3736oveq2d 6565 . . 3 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) = (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))))))
38 evlslem1.c . . . 4 𝐶 = (Base‘𝑆)
39 eqid 2610 . . . 4 (0g𝑆) = (0g𝑆)
40 evlslem1.s . . . . . 6 (𝜑𝑆 ∈ CRing)
41 crngring 18381 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
4240, 41syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
43 ringmnd 18379 . . . . 5 (𝑆 ∈ Ring → 𝑆 ∈ Mnd)
4442, 43syl 17 . . . 4 (𝜑𝑆 ∈ Mnd)
45 ovex 6577 . . . . . 6 (ℕ0𝑚 𝐼) ∈ V
462, 45rabex2 4742 . . . . 5 𝐷 ∈ V
4746a1i 11 . . . 4 (𝜑𝐷 ∈ V)
4842adantr 480 . . . . . 6 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
49 evlslem1.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
504, 38rhmf 18549 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐾𝐶)
5149, 50syl 17 . . . . . . . 8 (𝜑𝐹:𝐾𝐶)
524, 3ring0cl 18392 . . . . . . . . . 10 (𝑅 ∈ Ring → 0𝐾)
538, 52syl 17 . . . . . . . . 9 (𝜑0𝐾)
5410, 53ifcld 4081 . . . . . . . 8 (𝜑 → if(𝑏 = 𝐴, 𝐻, 0 ) ∈ 𝐾)
5551, 54ffvelrnd 6268 . . . . . . 7 (𝜑 → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶)
5655adantr 480 . . . . . 6 ((𝜑𝑏𝐷) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶)
57 evlslem1.t . . . . . . . 8 𝑇 = (mulGrp‘𝑆)
5857, 38mgpbas 18318 . . . . . . 7 𝐶 = (Base‘𝑇)
59 eqid 2610 . . . . . . 7 (0g𝑇) = (0g𝑇)
6057crngmgp 18378 . . . . . . . . 9 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
6140, 60syl 17 . . . . . . . 8 (𝜑𝑇 ∈ CMnd)
6261adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝑇 ∈ CMnd)
635adantr 480 . . . . . . 7 ((𝜑𝑏𝐷) → 𝐼 ∈ V)
64 cmnmnd 18031 . . . . . . . . . . 11 (𝑇 ∈ CMnd → 𝑇 ∈ Mnd)
6561, 64syl 17 . . . . . . . . . 10 (𝜑𝑇 ∈ Mnd)
6665ad2antrr 758 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑇 ∈ Mnd)
67 simprl 790 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑦 ∈ ℕ0)
68 simprr 792 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → 𝑧𝐶)
69 evlslem1.x . . . . . . . . . 10 = (.g𝑇)
7058, 69mulgnn0cl 17381 . . . . . . . . 9 ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑧𝐶) → (𝑦 𝑧) ∈ 𝐶)
7166, 67, 68, 70syl3anc 1318 . . . . . . . 8 (((𝜑𝑏𝐷) ∧ (𝑦 ∈ ℕ0𝑧𝐶)) → (𝑦 𝑧) ∈ 𝐶)
722psrbagf 19186 . . . . . . . . 9 ((𝐼 ∈ V ∧ 𝑏𝐷) → 𝑏:𝐼⟶ℕ0)
735, 72sylan 487 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝑏:𝐼⟶ℕ0)
74 evlslem1.g . . . . . . . . 9 (𝜑𝐺:𝐼𝐶)
7574adantr 480 . . . . . . . 8 ((𝜑𝑏𝐷) → 𝐺:𝐼𝐶)
76 inidm 3784 . . . . . . . 8 (𝐼𝐼) = 𝐼
7771, 73, 75, 63, 63, 76off 6810 . . . . . . 7 ((𝜑𝑏𝐷) → (𝑏𝑓 𝐺):𝐼𝐶)
78 ovex 6577 . . . . . . . . 9 (𝑏𝑓 𝐺) ∈ V
7978a1i 11 . . . . . . . 8 ((𝜑𝑏𝐷) → (𝑏𝑓 𝐺) ∈ V)
8077ffund 5962 . . . . . . . 8 ((𝜑𝑏𝐷) → Fun (𝑏𝑓 𝐺))
81 fvex 6113 . . . . . . . . 9 (0g𝑇) ∈ V
8281a1i 11 . . . . . . . 8 ((𝜑𝑏𝐷) → (0g𝑇) ∈ V)
832psrbag 19185 . . . . . . . . . 10 (𝐼 ∈ V → (𝑏𝐷 ↔ (𝑏:𝐼⟶ℕ0 ∧ (𝑏 “ ℕ) ∈ Fin)))
845, 83syl 17 . . . . . . . . 9 (𝜑 → (𝑏𝐷 ↔ (𝑏:𝐼⟶ℕ0 ∧ (𝑏 “ ℕ) ∈ Fin)))
8584simplbda 652 . . . . . . . 8 ((𝜑𝑏𝐷) → (𝑏 “ ℕ) ∈ Fin)
8673ffnd 5959 . . . . . . . . . . . 12 ((𝜑𝑏𝐷) → 𝑏 Fn 𝐼)
8786adantr 480 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝑏 Fn 𝐼)
8874ffnd 5959 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝐼)
8988ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝐺 Fn 𝐼)
905ad2antrr 758 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝐼 ∈ V)
91 eldifi 3694 . . . . . . . . . . . 12 (𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ)) → 𝑦𝐼)
9291adantl 481 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → 𝑦𝐼)
93 fnfvof 6809 . . . . . . . . . . 11 (((𝑏 Fn 𝐼𝐺 Fn 𝐼) ∧ (𝐼 ∈ V ∧ 𝑦𝐼)) → ((𝑏𝑓 𝐺)‘𝑦) = ((𝑏𝑦) (𝐺𝑦)))
9487, 89, 90, 92, 93syl22anc 1319 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑓 𝐺)‘𝑦) = ((𝑏𝑦) (𝐺𝑦)))
95 eldifn 3695 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ)) → ¬ 𝑦 ∈ (𝑏 “ ℕ))
9695adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ¬ 𝑦 ∈ (𝑏 “ ℕ))
9791ad2antlr 759 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑦𝐼)
98 simpr 476 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → (𝑏𝑦) ∈ ℕ)
9986ad2antrr 758 . . . . . . . . . . . . . . 15 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑏 Fn 𝐼)
100 elpreima 6245 . . . . . . . . . . . . . . 15 (𝑏 Fn 𝐼 → (𝑦 ∈ (𝑏 “ ℕ) ↔ (𝑦𝐼 ∧ (𝑏𝑦) ∈ ℕ)))
10199, 100syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → (𝑦 ∈ (𝑏 “ ℕ) ↔ (𝑦𝐼 ∧ (𝑏𝑦) ∈ ℕ)))
10297, 98, 101mpbir2and 959 . . . . . . . . . . . . 13 ((((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) ∧ (𝑏𝑦) ∈ ℕ) → 𝑦 ∈ (𝑏 “ ℕ))
10396, 102mtand 689 . . . . . . . . . . . 12 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ¬ (𝑏𝑦) ∈ ℕ)
104 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝑏:𝐼⟶ℕ0𝑦𝐼) → (𝑏𝑦) ∈ ℕ0)
10573, 91, 104syl2an 493 . . . . . . . . . . . . 13 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝑏𝑦) ∈ ℕ0)
106 elnn0 11171 . . . . . . . . . . . . 13 ((𝑏𝑦) ∈ ℕ0 ↔ ((𝑏𝑦) ∈ ℕ ∨ (𝑏𝑦) = 0))
107105, 106sylib 207 . . . . . . . . . . . 12 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑦) ∈ ℕ ∨ (𝑏𝑦) = 0))
108 orel1 396 . . . . . . . . . . . 12 (¬ (𝑏𝑦) ∈ ℕ → (((𝑏𝑦) ∈ ℕ ∨ (𝑏𝑦) = 0) → (𝑏𝑦) = 0))
109103, 107, 108sylc 63 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝑏𝑦) = 0)
110109oveq1d 6564 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑦) (𝐺𝑦)) = (0 (𝐺𝑦)))
111 ffvelrn 6265 . . . . . . . . . . . 12 ((𝐺:𝐼𝐶𝑦𝐼) → (𝐺𝑦) ∈ 𝐶)
11275, 91, 111syl2an 493 . . . . . . . . . . 11 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (𝐺𝑦) ∈ 𝐶)
11358, 59, 69mulg0 17369 . . . . . . . . . . 11 ((𝐺𝑦) ∈ 𝐶 → (0 (𝐺𝑦)) = (0g𝑇))
114112, 113syl 17 . . . . . . . . . 10 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → (0 (𝐺𝑦)) = (0g𝑇))
11594, 110, 1143eqtrd 2648 . . . . . . . . 9 (((𝜑𝑏𝐷) ∧ 𝑦 ∈ (𝐼 ∖ (𝑏 “ ℕ))) → ((𝑏𝑓 𝐺)‘𝑦) = (0g𝑇))
11677, 115suppss 7212 . . . . . . . 8 ((𝜑𝑏𝐷) → ((𝑏𝑓 𝐺) supp (0g𝑇)) ⊆ (𝑏 “ ℕ))
117 suppssfifsupp 8173 . . . . . . . 8 ((((𝑏𝑓 𝐺) ∈ V ∧ Fun (𝑏𝑓 𝐺) ∧ (0g𝑇) ∈ V) ∧ ((𝑏 “ ℕ) ∈ Fin ∧ ((𝑏𝑓 𝐺) supp (0g𝑇)) ⊆ (𝑏 “ ℕ))) → (𝑏𝑓 𝐺) finSupp (0g𝑇))
11879, 80, 82, 85, 116, 117syl32anc 1326 . . . . . . 7 ((𝜑𝑏𝐷) → (𝑏𝑓 𝐺) finSupp (0g𝑇))
11958, 59, 62, 63, 77, 118gsumcl 18139 . . . . . 6 ((𝜑𝑏𝐷) → (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶)
120 evlslem1.m . . . . . . 7 · = (.r𝑆)
12138, 120ringcl 18384 . . . . . 6 ((𝑆 ∈ Ring ∧ (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) ∈ 𝐶 ∧ (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ 𝐶)
12248, 56, 119, 121syl3anc 1318 . . . . 5 ((𝜑𝑏𝐷) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ 𝐶)
123 eqid 2610 . . . . 5 (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))))
124122, 123fmptd 6292 . . . 4 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶)
125 eldifsni 4261 . . . . . . . . . . . 12 (𝑏 ∈ (𝐷 ∖ {𝐴}) → 𝑏𝐴)
126125neneqd 2787 . . . . . . . . . . 11 (𝑏 ∈ (𝐷 ∖ {𝐴}) → ¬ 𝑏 = 𝐴)
127126iffalsed 4047 . . . . . . . . . 10 (𝑏 ∈ (𝐷 ∖ {𝐴}) → if(𝑏 = 𝐴, 𝐻, 0 ) = 0 )
128127adantl 481 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → if(𝑏 = 𝐴, 𝐻, 0 ) = 0 )
129128fveq2d 6107 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (𝐹0 ))
130 rhmghm 18548 . . . . . . . . . . 11 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
13149, 130syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
1323, 39ghmid 17489 . . . . . . . . . 10 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹0 ) = (0g𝑆))
133131, 132syl 17 . . . . . . . . 9 (𝜑 → (𝐹0 ) = (0g𝑆))
134133adantr 480 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹0 ) = (0g𝑆))
135129, 134eqtrd 2644 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (0g𝑆))
136135oveq1d 6564 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))) = ((0g𝑆) · (𝑇 Σg (𝑏𝑓 𝐺))))
13742adantr 480 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → 𝑆 ∈ Ring)
138 eldifi 3694 . . . . . . . 8 (𝑏 ∈ (𝐷 ∖ {𝐴}) → 𝑏𝐷)
139138, 119sylan2 490 . . . . . . 7 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶)
14038, 120, 39ringlz 18410 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶) → ((0g𝑆) · (𝑇 Σg (𝑏𝑓 𝐺))) = (0g𝑆))
141137, 139, 140syl2anc 691 . . . . . 6 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((0g𝑆) · (𝑇 Σg (𝑏𝑓 𝐺))) = (0g𝑆))
142136, 141eqtrd 2644 . . . . 5 ((𝜑𝑏 ∈ (𝐷 ∖ {𝐴})) → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))) = (0g𝑆))
143142, 47suppss2 7216 . . . 4 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺)))) supp (0g𝑆)) ⊆ {𝐴})
14438, 39, 44, 47, 11, 124, 143gsumpt 18184 . . 3 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))))) = ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))))‘𝐴))
14537, 144eqtrd 2644 . 2 (𝜑 → (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘((𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))‘𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))) = ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))))‘𝐴))
146 iftrue 4042 . . . . . 6 (𝑏 = 𝐴 → if(𝑏 = 𝐴, 𝐻, 0 ) = 𝐻)
147146fveq2d 6107 . . . . 5 (𝑏 = 𝐴 → (𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) = (𝐹𝐻))
148 oveq1 6556 . . . . . 6 (𝑏 = 𝐴 → (𝑏𝑓 𝐺) = (𝐴𝑓 𝐺))
149148oveq2d 6565 . . . . 5 (𝑏 = 𝐴 → (𝑇 Σg (𝑏𝑓 𝐺)) = (𝑇 Σg (𝐴𝑓 𝐺)))
150147, 149oveq12d 6567 . . . 4 (𝑏 = 𝐴 → ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))) = ((𝐹𝐻) · (𝑇 Σg (𝐴𝑓 𝐺))))
151 ovex 6577 . . . 4 ((𝐹𝐻) · (𝑇 Σg (𝐴𝑓 𝐺))) ∈ V
152150, 123, 151fvmpt 6191 . . 3 (𝐴𝐷 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))))‘𝐴) = ((𝐹𝐻) · (𝑇 Σg (𝐴𝑓 𝐺))))
15311, 152syl 17 . 2 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘if(𝑏 = 𝐴, 𝐻, 0 )) · (𝑇 Σg (𝑏𝑓 𝐺))))‘𝐴) = ((𝐹𝐻) · (𝑇 Σg (𝐴𝑓 𝐺))))
15421, 145, 1533eqtrd 2648 1 (𝜑 → (𝐸‘(𝑥𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹𝐻) · (𝑇 Σg (𝐴𝑓 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643  ccnv 5037  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158  0cc0 9815  cn 10897  0cn0 11169  Basecbs 15695  .rcmulr 15769  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  .gcmg 17363   GrpHom cghm 17480  CMndccmn 18016  mulGrpcmgp 18312  Ringcrg 18370  CRingccrg 18371   RingHom crh 18535   mVar cmvr 19173   mPoly cmpl 19174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-rnghom 18538  df-lmod 18688  df-lss 18754  df-psr 19177  df-mpl 19179
This theorem is referenced by:  evlslem1  19336
  Copyright terms: Public domain W3C validator