Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0subcl Structured version   Visualization version   GIF version

Theorem mulgnn0subcl 17377
 Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
mulgnn0subcl.z 0 = (0g𝐺)
mulgnn0subcl.c (𝜑0𝑆)
Assertion
Ref Expression
mulgnn0subcl ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem mulgnn0subcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 mulgnnsubcl.t . . . . . 6 · = (.g𝐺)
3 mulgnnsubcl.p . . . . . 6 + = (+g𝐺)
4 mulgnnsubcl.g . . . . . 6 (𝜑𝐺𝑉)
5 mulgnnsubcl.s . . . . . 6 (𝜑𝑆𝐵)
6 mulgnnsubcl.c . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
71, 2, 3, 4, 5, 6mulgnnsubcl 17376 . . . . 5 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
873expa 1257 . . . 4 (((𝜑𝑁 ∈ ℕ) ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
98an32s 842 . . 3 (((𝜑𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆)
1093adantl2 1211 . 2 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆)
11 oveq1 6556 . . . 4 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
1253ad2ant1 1075 . . . . . 6 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑆𝐵)
13 simp3 1056 . . . . . 6 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑋𝑆)
1412, 13sseldd 3569 . . . . 5 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑋𝐵)
15 mulgnn0subcl.z . . . . . 6 0 = (0g𝐺)
161, 15, 2mulg0 17369 . . . . 5 (𝑋𝐵 → (0 · 𝑋) = 0 )
1714, 16syl 17 . . . 4 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (0 · 𝑋) = 0 )
1811, 17sylan9eqr 2666 . . 3 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = 0 )
19 mulgnn0subcl.c . . . . 5 (𝜑0𝑆)
20193ad2ant1 1075 . . . 4 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 0𝑆)
2120adantr 480 . . 3 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 0𝑆)
2218, 21eqeltrd 2688 . 2 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) ∈ 𝑆)
23 simp2 1055 . . 3 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑁 ∈ ℕ0)
24 elnn0 11171 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2523, 24sylib 207 . 2 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2610, 22, 25mpjaodan 823 1 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  ‘cfv 5804  (class class class)co 6549  0cc0 9815  ℕcn 10897  ℕ0cn0 11169  Basecbs 15695  +gcplusg 15768  0gc0g 15923  .gcmg 17363 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-mulg 17364 This theorem is referenced by:  mulgsubcl  17378  mulgnn0cl  17381  submmulgcl  17408  mplbas2  19291
 Copyright terms: Public domain W3C validator